
TRIBUNALE ORDINARIO DI VENEZIA

Prima Sezione Civile – Gruppo Esecuzioni Immobiliari Procedura di esecuzione immobiliare n. 391/2021

contro

N. Gen. Rep. **391/2021** data udienza ex art. 569 c.p.c.: **18/10/2022**

Giudice delle Esecuzioni: **Dott.ssa Martina GASPARINI**Custode giudiziario: **Avv. Domenico PIOVESANA**

RELAZIONE DI CONSULENZA TECNICA D'UFFICIO Perizia di stima immobiliare

Lotto unico

Si tratta della quota di 1/1 della piena proprietà di **terreni edificabili** di superficie catastale di ha 30.92.40, facenti parte di un Piano Urbanistico Attuativo denominato "Orizzonte Verde" (ex Parco Pineta) di complessivi ha 60.76.95, in Comune di Jesolo (VE) – località Cortellazzo, oggetto di Convenzione Urbanistica datata 27/05/2013 rep. n. 92527 del Notaio Carlo Bordieri, con la quale il "Consorzio Parco Pineta" con sede a Vicenza (VI), è stato autorizzato dal Comune ad attuare il suddetto Piano con la realizzazione e cessione delle opere di urbanizzazione Primaria, Secondaria e altri adempimenti di cui si rinvia alla Convenzione.

Allo stato attuale i lavori di lottizzazione non sono ancora iniziati.

FASCICOLO ALLEGATI – 3

Esperto alla stima: Arch. Stefano Barbazza

Codice fiscale: BRBSFN63S27H823P

Studio in: Gall. Progresso 5 - 30027 S. Donà di Piave (VE)

Telefono: 0421332720

Email: stefano.barbazza@virgilio.it

Pec: stefano.barbazza@archiworldpec.it

Eleno Allegati

- A1) Giuramento dell'esperto stimatore
- A2) Proroga concessa dal Signor Giudice
- A3) Estratti mappa catastali
- A4) Vista aerea
- A5) Visura camerale della società esecutata
- da B1 a B31) Visure planimetrie elaborato planimetrico, catastali
- da C1 a C41) Documentazione Piano Urbanistico Attuativo (P.U.A.)
- D1) Certificato Destinazione Urbanistica (C.D.U.)
- D2) Stralcio mappa Piano degli Interventi (P.I.) e artt. 13 23 105 delle N.T.A.
- da E1 a E14) Atti notarili
- E15) Convenzione Urbanistica
- E16) Comunicazione Agenzia delle Entrate
- F1-F2-F3-F4) Ispezioni ipotecarie
- G1) Tabella rivalutazione monetaria
- G2) Prospetto con riportata la volumetria assegnata alla società
- H1) Documentazione fotografica

Provincia di Venezia

P.U.A. AMBITO DI PROGETTAZIONE UNITARIA N.34

ELABORATI

RELAZIONE TECNICA E IDRAULICA RETI FOGNARIE BIANCHE E NERE

APPROVATO CON DELIBERAZIONE DI GRUNTA COMUNALE N. 290 DEL 16.10.2012

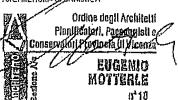
OL SEGRETARIO GENERALE Dott. Francesco Pucci

IL DIRIGENTE AREA TÉCNICA Arch. Renato Segatto

Novembre 2011

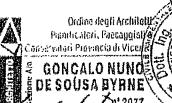
i J:\AreaFrogetti\JESOLO\JES PUA 2011\JES2011 ELABORATI PUA UES2011 Allegati definitivi/JES2011_10_Relazione idraultoa

SOGGETTO PROPONENTE: CONSORZIO PARCO PINETA


CONSORZIO PARCO, PINETA Vavegchia Ferfiela, 51 36100 VIEENZA CIFA RIVA 08751690276

STUDIO MOTTERLE

Viale 28ail, 4 - 36050 Montoviale (VI) t. +39 0444 984190 f. +39 0444 963079


www.elodiomotterle.com progetti@atudiomotterle.com

Gençalo Byrne Arquitectos, Lda

Run da Essola Politssuca 205 1250-101 Listun - Portugal 1 - 151 21 3804190 F - 151 21 3004190

neral@bymearc.com i communicalinis@bymearq.com mos, pisun tyd www.

INDICE

PARTE	E PRIMA	3
1.	Premesse	3
2.	Inquadramento territoriale	4
	2.1. PRG vigente	5
3.	inquadramento geologico e idrogeo	ologico 6
	3.1. Inquadramento geologico	6
	3.2. Inquadramento idrogeolog	
PARTE	E SECONDA ~ RETE ACQUE METEO!	RICHE 9
1.	Elaborazione delle precipitazioni	9
2.	Determinazione del tempo di ritorno	12
3.	Stima delle portate meteoriche	17
	3.1. Le superfici scolanti	17
	3.2. Determinazione del coeffici	iente di deflusso 19
	3.3. Il tempo di corrivazione	21
	3.4. Calcolo delle portate di sci	olo 23
4.	Verifica idraulica – scala delle porta	te 24
5.	Mitigazione idraulica	25
6.	Descrizione della rete fognaria acqu	e meteoriche 26
	6.1. Le condoite	26
	6.2. l pozzetti di ispezione stra	dale 26
	 6.3. Gil allacciamenti delle terre 	alte 27
	6.4. Le caditale stradali	27
7.	Dimensionamento vasche di prima p	ologgfa 28
PARTE	TERZA – RETE FOGNARIA NERA	30
1.	Caratteristiche generali della rete	30
2.	Determinazione della portata acque	nere 32
3.	Verifica dell'azione autopulente	34
4.	Verifica idraulica - scala delle portat	35
5.	Descrizione della rete fognaria acqu	e nere 36

		5.1.	Le condolte a gravità	36
		5.2.	i pozzetti di ispezione stradale	36
		5.3.	Gli allacciamenti delle utenze private	37
(6.	Impianto di	sollevamento IS1	38
		6.1.	Dimensionamento elettropompe	3B
		6.2.	Dimensionamento pozzo di alloggiamento	40
;	7.	Impianti di	sollevamento IS2, IS3	42
		7,1.	Dimensionamento elettropompe	42
		7.2.	Dimensionamento pozzo di alloggiamento	44
ALLE	EG/	A TI		46
•	1.	Verifica idn	aulica rete acque meteoriche	46
:	2.	Verifica idn	aulica rete fognaria nera	46

PARTE PRIMA

1. PREMESSE

Su richiesta della committenza è stato effettuato il presente studio Idraulico preliminare riguardante i sistemi di fognatura delle acque nere e bianche relativamente all'intervento denominato "P.U.A. Orizzonte Verde" nel Comune di Jesolo (VE).

Il PRG colloca in quest'area come uno dei grandi comparti a destinazione "turistica" previsti dalla pianificazione urbanistica. Per posizione e destinazione è certamente tra le aree più strategiche nella riqualificazione urbanistica che l'Amministrazione Comunale di Jesolo sta portando avanti in questo decennio. L'espansione residenziale e di strutture a servizio è subordinata ad una sistemazione ambientale consona all'area di pineta limitrofa e di pregio ambientale.

Per quanto concerne le reti fognarie, queste saranno realizzate con il cosiddetto sistema "separato" che prevede la messa in opera di due reti di fognatura distinte che raccoglieranno, rispettivamente, le acque meteoriche derivanti dalla precipitazioni che investono la superficie e le acque reflue di scarico civile.

L'area di intervento risulta molto vasta, dell'ordine dei 60 ettari, tuttavia ampie superfici saranno dedicate a parco, a verde o ad impianti sportivi. Ai fini della presente relazione verranno in sostanza considerate le sole superfici che subiscono trasformazione territoriale, le cui estensioni e posizioni saranno indicate nel seguito.

Il documento è suddiviso in più parti:

- Prima Parte: contiene un inquadramento territoriale generale dell'area di Intervento, nonché un inquadramento geologico ed idrogeologico.
- Seconda Parte Rete acque meteoriche: contiene lo studio delle precipitazioni, il
 calcolo della portata meteorica e il dimensionamento e le caratteristiche della rete di
 raccolta acque meteoriche.
- Terza Parte -- Rete fognaria nera: contiene il dimensionamento della rete fognaria nera
 e degli implanti di sollevamento nonché le principale caratteristiche tecniche della rete.
- Allegati: contiene i calcoli idraulici di dettaglio.

.....

~\}

 \cap

-)

2. INQUADRAMENTO TERRITORIALE

L'area oggetto dell'intervento è localizzata nella zona est del territorio comunale di Jesolo, immediatamente a sud della località Cortellazzo, in adiacenza alla fascia costiera.

La superficie si localizza in corrispondenza della foce del fiume Plave, in sua destra orografica, ed è delimita a nord-est dal canale Cavetta (canale di collegamento tra il fiume Sile e il fiume Piave), a nord-ovest dal canale Cortellazzo (un canale morto che scorre in direzione est-ovest) e a sud dalla pineta litoranea.

L'estensione della superficie è molto ampia, dell'ordine del 614.000 mq, che verranno in parte edificati con la realizzazione di comparti residenziali, in parte saranno adibiti ad impianti sportivi, e per buona parte saranno lasciate a verde, in armonia con la spiccata natura a parco delle aree circostanti. Si deduce dall'ortofoto di seguito riportata la natura agricola dell'area di intervento. Ciò comporta la presenza di una fitta rete di fossi e scoli artificiali, ad andamento rettilineo e con regime idraulico variabile in funzione della stagione, con funzione irrigua e di sgrondo delle acque meteoriche.

Inquadramento dell'area di intervento su ortofoto

Da un punto di vista altimetrico, le quote del piano campagna risultano costantemente al di sotto del livello dei medio mare. Nella fascia meridionale dell'area del futuro Parco Pineta, nel passaggio all'area litoranea, si verifica un graduale incremento di quote. La fascia litoranea di Jesolo è infatti caratterizzata da quote dell'ordine dei 2 m al di sopra del medio mare.

2.1. PRG vigente

/ · · j

La definizione del PRG prevede uno Schema Direttore quale strumento di orientamento che contiene i necessari criteri di impostazione urbanistica dell'area. Tale strumento è stato indicato e richiesto dalla Regione Veneto che ne ha definito la valenza soprattutto in relazione allo studio di Landscape Ecology realizzato dal Comune di Jesolo per il territorio comunale.

Per quanto attiene la destinazione urbanistica del sito, il PRG adottato dal Comune di Jesolo inserisce l'area di studio entro due distinte zone territoriali indicate come:

- Zona per residenze turistiche "C 2.1" (corrispondente in sostanza a tutta la parte al di sotto dell'asse Canale Cortellazzo). L'area di interesse "Parco Pineta C 2.1-1.4" prevede la realizzazione di strutture residenziali a carattere turistico con la prescrizione che l'edificazione sia coerente con quanto previsto dallo Schema Direttore,
- Zona turistica per impianti di svago D4 (corrispondete in sostanza a tutta la parte nord est al di sopra dell'asse del Canale Cortellazzo) riservata alla creazione di impianti e stabilimenti di carattere turistico riservati allo svago, al gioco e allo sport. In particolare l'Area per il Parco della Pineta D4-12 è destinata alla realizzazione di attrazioni turistiche di tipo ricreativo e didattico-culturale incentrate sull'ambiente, dovendo in tal senso prevedere la realizzazione di uno specchio d'acqua alimentato dal Canale Cavetta, al fine di ricreare delle zone umide in grado di ospitare le specie ornitiche presenti nel territorio circostante.

._;

_')

(_,

3. INQUADRAMENTO GEOLOGICO E IDROGEOLOGICO

Per completezza di trattazione si riporta in breve quanto riportato nella Relazione geologicotecnica redatta a cura di Sinergeo s.r.l. in data 30/01/08. Per maggiore dettaglio si rimanda pertanto al citato documento.

3.1. Inquadramento geologico

Il sottosuolo della pianura veneziana rappresenta il risultato della deposizione operata dai corsi d'acqua che hanno solcato tale zona in tempi protostorici. Le migrazioni del Piave, del Livenza e del Sile nel tratto inferiore del loro corso, e le vicende idrografiche che hanno interessato la pianura compresa tra i tre fiumi, hanno portato, attraverso meccanismi di deposito e complesse interazioni con l'azione del mare Adriatico, alla formazione della struttura del sottosuolo.

Per quanto riguarda i sedimenti del settore in esame la loro origine è correlata principalmente ad alcuni episodi di deposito del Piave e ai fenomeni di migrazione della sua foce a sud dell'abitato di Cortellazzo.

Più in dettaglio, l'esame di una stratigrafia di archivio, elaborata a partire dai dati ricavati da una prova indiretta effettuata nei pressi della zona industriale di Jesolo, indica che il sottosuolo risulta costituito da depositi a granulometria prevalentemente fine, principalmente argille, fino a profondità di circa 10 m.

A quote superiori, fino a profondità dell'ordine dei 25 m (massima profondità indagata), si rinvengono alternanze, di spessore non superiore agli 80 cm, di depositi di pezzatura prevalentemente granulare (sabbie) ed ancora coesiva (limi e argille).

Si sottolinea comunque che la variabilità nello spazio e nel tempo dei processi e degli ambienti sedimentari che hanno determinato la deposizione dei materiali può potare ad una forte anisotropia nella costituzione di litotipi anche a distanza ravvicinata.

Per tale motivo è stata condotta una campagna di indagine per definire in maniera più precisa le caratteristiche stratigrafiche dell'area in esame.

In particolare le prove effettuate mettono in luce un quadro stratigrafico complesso che vede la presenza di depositi a granulometria principalmente fine strutturati in livelli a prevalente componente sabbioso-limosa ai quali si intervallano orizzonti a pezzatura più grossolana (sabbie e sabbie con ghiala), materiali più coesivi di tipo limoso-argilloso e sottili lenti di argille torbose.

La successione verticale dei diversi litotipi individuati appare molto differenza in relazione al punto di indagine specifico, evidenziando una situazione del sottosuolo giobalmente disomogenea.

Sono state selezionate porzioni di territorio caratterizzate da specifiche peculiarità stratigrafiche.

Per tali settori è possibile formulare le seguenti considerazioni di massima:

- nella porzione meridionale si annovera un livello di torba e argilla torbosa dello spessore di 20 cm a profondità compresa tra 3,6 e 4,0 m dal piano campagna;
- presso il settore centrale immediatamente a sud del Canale Cortellazzo i punti indagati presentano un quadro stratigrafico piuttosto coerente costituito da depositi tipicamente attribuibili ad un ambiente di bassa pianura con alternanza di livelli limoso-sabbiosi e di depositi costituiti principalmente di sabbia e sabbia con ghiaia;
- nella porzione orientale al confine con il fiume Piave aumenta rispetto al settore centrale il contenuto di materiali coesivi con livelli di tipo limoso-argilloso variamente distribuiti lungo la verticale di indagine.

3.2. Inquadramento idrogeologico

Il sito oggetto di intervento si ubica dentro il settore degli acquiferi differenziati di bassa pianura. La morfologia generale dei deflussi sotterranei caratterizza il settore in esame per:

- la presenza di una falda superficiale, la cui quota assoluta è prossima a 0,0 m s.m.m.;
- una prevalente direzione di deflusso orientata da nord-ovest verso sud-est;

Fonti di archivio sottolineano che nelle zone lagunari in esame la superficie piezometrica è posta generalmente appena al di sotto del piano campagna.

Sì evidenzia ancora che l'estrema variabilità stratigrafica locale entro le profondità di interesse (primi 6 m circa) gioca un ruolo primario nel meccanismi di flusso e trasporto in falda.

Si deve inoltre tenere in debita considerazione che in tutta l'area, depressa a seguito delle operazioni di bonifica per una miglioria dei fondi, sono presenti idrovore che possono presumibilmente influenzare il naturale decorso dei deflussi sotterranei.

In agglunta non risultano chiari e definiti i rapporti acqua dolce/salata in relazione soprattutto alle prevedibili inversione di direzione dei deflussi sotterranei al variare delle maree.

Le indagini geognostiche eseguite hanno verificato l'esistenza di una circolazione idrica sotterranea di tipo freatico, presente nell'area di indagine nei primi metri di profondità, compresa tra 0,40 e 1,44 m dal piano campagna.

Le caratteristiche fisiche e morfologiche dell'area di indagine (territorio pianeggiante ma con quote prevalentemente sotto il livello di mare) nonché i diversi aspetti idrogeologici possono creare condizioni di dissesto o condizione di esposizione al rischio.

Verificando le carte della pericolosità e del rischio allegate al Piano di Assetto del Territorio redatto dall'Autorità di Bacino del Sile e della Pianura tra Piave e Livenza, si osserva che una buona porzione del Parco Pineta ricade entro un settore a pericolosità moderata, mentre l'area prossima alla confluenza del Canale Cavetta con il fiume Piave rappresenta una zona a bassa pericolosità per effetto del naturale scolo di tipo meccanico.

()

 C_j

()

Si può ritenere pertanto che sono stati identificati come mediamente pericolosì quel terreni interessati da recente bonifica che si trovano sotto il livello del medio mare.

Per quanto concerne il rischio idraulico, l'area oggetto di indagine si trova inserita in una porzione di territorio a rischio moderato.

PARTE SECONDA - RETE ACQUE METEORICHE

1. ELABORAZIONE DELLE PRECIPITAZIONI

Per l'elaborazione della curva di possibilità pluviometrica dell'area di Jesolo si è fatto riferimento a quanto analizzato e riportato nel "Regolamento per l'uso, la progettazione e realizzazione della rete di fognatura comunale e per lo smaltimento delle acque usate" del Comune di Jesolo.

Nel dimensionamento di una rete fognaria bianca risulta determinante la corretta individuazione dell'evento di pioggia critico per tale rete.

E' noto, dalle leggi dell'Idraulica, che gli eventi pluviometrici più gravosi per una rete collettrice, naturale od artificiale, sono quelli di durata dell'ordine del tempo di corrivazione, inteso come l'intervallo di tempo necessarlo affinché la particella d'acqua idraulicamente più lontana raggiunga la sezione di chiusura del bacino. In tal senso l'intero bacino scolante contribuisce alla formazione della portata di piena.

Per condotte a servizio di piccole superfici, i tempi di corrivazione sono dell'ordine dei minuti, mentre sono di qualche ora per condotte terminali drenanti aree estese.

Per superfici di estensione limitata, le precipitazioni da considerare nel dimensionamento delle reti di fognatura sono pertanto essenzialmente quelle brevi ed intense (di durata inferiore all'ora). Più raramente, per condotte principali ove scarichino bacini di notevole dimensione, si considerano tempi di durata di alcune ore.

Al fine di individuare le equazioni pluviometriche da utilizzare nella progettazione di reti di drenaggio urbano all'interno del bacino del Basso Piave, è stato realizzato uno "Studio di Regionalizzazione degli Eventi Pluviometrici Critici". Scopo di tale studio è quello di consentire la valutazione, attraverso semplici relazioni matematiche, dell'altezza dell'afflusso meteorico critico in una qualsiasi località del Basso Piave partendo dalle registrazioni storiche delle stazioni pluviometriche esistenti nel territorio in esame.

Sono state considerate le precipitazioni di durata oraria, in quanto l'indagine è finalizzata alla determinazione delle portate massime che possono interessare un bacino di estensione relativamente modesta drenato da una rete fognaria.

L'elaborazione statistica delle serie pluviometriche è stata effettuata tramite la distribuzione doppio esponenziale o di Gumbel,

()

 \bigcirc

l risultati di tali elaborazioni portano alla definizione di un'equazione che permette di ricavare il valore estremo dell'altezza di pioggia, in funzione del tempo di ritorno e della durata di pioggia prescelti, in base alla località in cui ci si trova all'interno del Comprensorio del Basso Piave.

Tale equazione assume la forma:

$$h(x, t, T_r) = H(x) \cdot [1 + 0.40 \cdot Y(T_r)] \cdot t^{n(x)}$$

dove:

h = altezza critica di precipitazione (mm)

t = durata dell'evento di precipitazione (ore)

Tr = tempo di ritomo (anni)

Y(tr) = - ln (- ln (1 - 1Tr))

H(x) e п(x): parametri di regionalizzazione

Nell'area esaminata il parametro H(x) rimane compreso in un intervallo che varia da 21 a 29, mentre il parametro n(x) rimane compreso in un intervallo tra 0,23 e 0,32.

Si riportano nella tabella a pagina seguente i valori dei parametri di regionalizzazione in corrispondenza alle stazioni pluviometriche considerate.

Nel caso in esame per l'estrapolazione della curva di possibilità climatica sono stati considerati i valori relativi alla stazione di Cortellazzo Ca' Gamba che fornisce i seguenti valori:

-H(x) = 25 (mm/ora)

-n(x) = 0.27

Si fa presente che nelle elaborazioni statistiche non si sono potuti prendere in esame gli scrosci in quanto i dati relativi sono disponibili in un numero limitato di stazioni e per un periodo non sufficientemente esteso. Per tornare alla formulazione classica della curva di possibilità climatica si è identificato il parametro a con H(x)[1+0,40Y(Tr)].

Per durate di precipitazioni inferiori all'ora si può comunque ritenere lecito estrapolare le curve delle durate orarie ottenendo valori di pioggia egualmente significativi, quantomeno se non ci si spinge a durate troppo modeste (inferiori ai 15-20 minuti).

	ll'equazione plu CIPITAZIONI C zione di Jesolo	RARIE
T, (anni)	а	n
10	47,50	0,27
20	54,70	0,27
50	64,02	0,27

Stazione	H(x)	n(x)
ODERZO	23	0,29
MOTTA DI LIVENZA	21	0,32
PORTOGRUARO	28	0,28
LATISANA	25	0,32
CONCORDIA DI SAGITTARIA	26	0,27
VILLA	29	0,27
FRAIDA Idrov.	29	0,26
TORRE DI MOSTO	27	0,26
S. DONA' DI PIAVE	24	0,24
FOSSA'	25	0,23
FIUMICINO	28	0,25
CITTANOVA	27	0,22
STAFFOLO	23	0,30
BOCCAFOSSA	24	0,24
S. GIORGIO DI LIVENZA	27	0,29
BEVAZZANA	27	0,32
TERMINE	33	0,29
PORTESINE Idrov.	24	0,26
LANZONI (CAPOSILE)	25	0,27
ZUCCARELLO Idrov.	23	0,26
CORTELLAZZO CA' GAMBA	25	0,27
CA' PORCIA	24	0,28
CA' PASQUALI TREPORTI	24	0,25
S. NICOLO LIDO	22	0,26

Valori dei parametri H(x) e n(x) per le stazioni pluviometriche considerate

2. DETERMINAZIONE DEL TEMPO DI RITORNO

L'analisi delle grandezze idrologiche permette di associare al loro valore il concetto di rischio che sta alla base della progettazione idraulica.

Nel nostro caso la grandezza idrologica che consideriamo è l'altezza di precipitazione critica che può essere associata ad un tempo di ritorno, ovvero la durata media del periodo in cui l'evento fissato venga superato una sola volta.

La definizione del tempo di ritorno dell'evento meteorico critico viene fatta mediante un'analisi multicriteriale.

Per la scelta dell'intervallo di rischio di progetto, cioè dei valori massimi e minimi del Tempo di Ritorno, si parte da una matrice di orientamento redatta in base a normative e regolamenti di livello nazionale e internazionale e alla realtà locale dei bacini dell'Alto Adriatico.

Nel caso specifico si ha:

Mel Cago obcourse at the		
Tipologia di opera idraulica	Tr min (anni)	Tr max (anni)
	10	30
Reti di fognatura		

Dedotto tale intervallo di rischio idraulico di riferimento per dimensionare l'opera di progetto si classifica la stessa in base ad una serie di criteri in modo da avere un orientamento più preciso relativamente a quale parte di detto intervallo fare riferimento per il dimensionamento.

l criteri individuati sono riferiti a tre categorie di conoscenze:

A. Criteri riferiti alla tipologia delle opere

- criterio della modificazione della probabilità del danno dovuta al tipo di opera
- criterio delle dimensioni caratteristiche che non variano al variare del rischio assunto
- criterio del sito di realizzazione dell'opera, legato al fattore di impatto ecologico
- criterio della capacità residua delle opere di mantenere la funzionalità di progetto

B. Criteri riferiti alla tipologia del sito dove insiste l'opera

- criterio legato all'impatto paesaggistico-ambientale
- 6. criterio legato ai costi sociali

Criteri riferiti al valore del bene difeso

- 7. gli edifici
- gli insediamenti produttivi
- 9. l'agricoltura
- 10. la viabilità
- 11. le infrastrutture a rete

Si usa un metodo multicriteriale qualitativo che consiste nell'assegnare ai criteri un valore qualitativo che indica se il tempo di ritorno da assumere, per quello specifico criterio, debba essere massimo, medio, minimo.

Tale índice è esprimibile con un valore numerico ordinale 2, 1, 0.

A) Criteri riferiti alla tipologia delle opere

Criterio della modificazione della probabilità del danno dovuta al tipo di opera

L'inserimento di un'opera idraulica di difesa modifica il naturale deflusso delle acque e modifica conseguentemente la legge di distribuzione di probabilità di verificarsi del danno di evento calamitoso.

Le diverse opere idrauliche sono caratterizzate da comportamenti diversi nei confronti della distribuzione di probabilità del danno in relazione al loro modo differente di funzionare in corrispondenza dell'evento.

l collettori fognari per le acque meteoriche hanno sostanzialmente la funzione di drenare e collettare l'acqua in eccesso che si genera sui territorio servito, il loro funzionamento è legato alla portata di progetto superata la quale si ha la stessa sommersione del territorio che si avrebbe senza collettore; il tempo di permanenza dell'evento alluvionale viene però modificato dalla presenza del collettore e quindi viene contenuto il danno; in tale prospettiva si assume un indice medio (indice =1)

Criterio delle dimensioni caratteristiche dell'opera

La variazione delle dimensioni di un'opera in funzione del tempo di ritorno incide sui costi di realizzazione dell'opera stessa. Si sono individuate le dipendenze funzionali delle caratteristiche geometriche delle opere dal tempo di ritorno in modo da evidenziare come varia la curva dei costi al variare dello stesso tempo di ritorno. In questo modo è possibile giudicare la convenienza di adottare tempi di ritorno più o meno alti in funzione dell'incremento di costo che questi comportano.

Per le opere di fognatura si verifica come a grandi variazioni di Tr corrispondano piccole variazioni di costo e come quindi risulti conveniente adottare tempi di ritorno relativamente alti.

Pertanto si assume un indice medio (indice=1).

()

Criterio dell'impatto ecologico dell'opera

La realizzazione di un'opera idraulica, per le modificazioni che esse induce, implica sempre un certo impatto sull'ambiente tanto più forte quanto più grande è l'opera. Si valuta l'Impatto legato alla variazione che l'opera può indurre nella naturalità del corso d'acqua cambiandone le caratteristiche o legato alle modificazioni del paesaggio.

Le opere di fognatura in generale non modificano tali equilibri naturali quindi si assume un tempo di ritorno massimo (indice=2).

Criterio della capacità residua dell'opera a mantenere la funzionalità di proqetto

Un'opera idraulica qualora venga interessata da un evento di piena maggiore di quello di progetto può essere danneggiata o distrutta dall'evento stesso; in tal caso anche eventi minori di quello di progetto arrecano danno al territorio che afferisce all'opera.

Le opere di fognatura mantengono inalterata la propria funzionalità per cui non è necessario aumentare i tempi di ritorno per avere una maggiore garanzia di sicurezza per gli eventi seguenti all'evento di progetto.

Pertanto per i collettori fognari, per i quali il superamento dell'evento di progetto non comporta la compromissione della loro funzionalità per eventi successivi, si assume un indice minimo (indice=0).

B) Criteri riferiti alla tipologia del sito dove insiste l'opera

Criterio legato all'impatto ambientale paesaggistico

Per quanto riguarda l'influenza delle opere entro terra, l'impatto si considera limitato e quindi non costituisce vincolo per l'adozione del tempo di ritorno massimo.

Si sceglie pertanto un indice di tempo di ritorno massimo (indice=2).

Criterio dei costi sociali

La realizzazione di un'opera idraulica comporta oltre al puro costo di investimento una serie di costi aggiuntivi, definiti anche come costi sociali, intesi come perdite di tempo per limitazioni al traffico generate dai lavori. Ovviamente i costi aggiuntivi maggiori si hanno quando l'opera viene realizzata in zone di elevata mobilità; maggiore è il tempo di ritorno, minore è la probabilità di riinteressare la zona con i lavorì e quindì con i disagi provocati.

L'opera viene realizzata in una zona interessata da mobilità secondaria, si assume un tempo di ritorno medio (indice=1).

C) Criteri riferiti al valore del bene difeso

Gli aspetti economici coinvolti dalla presenza di un'opera di difesa idraulica possono essere individuati analizzando gli effetti negativi che si avrebbero nel caso che l'opera non sia realizzata; si valuta quindi il danno evitato.

<u>Edifici</u>

 $\langle \hat{\ } \rangle$

()

()

Il bacino viene realizzato in un'area in cui la presenza di edifici è piuttosto limitata; si assume un tempo di ritorno medio (indice=1).

Insediamenti produttivi

L'opera è situata in una zona in cui non sono presenti insediamenti produttivi di valore; si assume un tempo di ritorno minimo (indice=0).

<u>Agricoltura</u>

L'area interessata dalla costruzione dell'opera non presenta un'agricoltura di pregio; si assume pertanto un tempo di ritorno minimo (indice=0).

<u>Via</u>bilità

L'opera viene costruita in una zona interessata da viabilità di importanza secondaria; si assume pertanto un tempo di ritorno minimo (indice=0).

Infrastrutture a rete

SI è riscontrata la presenza limitata di infrastrutture a rete. Si assume pertanto un tempo di ritorno medio (indice=1).

Descrizione della metodologia per l'individuazione del valore orientativo del rischio di progetto

Una volta definiti gli undici attributi da dare ai criteri per l'opera in esame, si tratta di determinare un parametro unico che permetta di entrare nell'intervallo predefinito tra Tr_{min} e Tr_{max} e stabilire quale tempo di ritorno adottare.

Per individuare il Tr si utilizza un'equazione derivata dalla tecnica di analisi multicriteriale denominata Compromise Programming.

Per prima cosa si associa al valore di Tr_{max} un punto ideale nello spazio a 11 dimensioni (tanti sono i criteri individuati) rappresentato dal vettore che assume, per tutti i criteri, i valori massimi che si possono attribuire all'indice:

Si associa poi al valore V che identifica l'opera in esame il punto rappresentato dagli 11 valori attribuiti ai criteri:

$$V=V(x_1,...,x_i,...,x_{i+1})$$

e si calcola la distanza geometrica D del Punto Ideale dal punto V

$$D=\sqrt{\left(\sum_{i}(x_{imax}-x_{i})^{2}\right)}$$

dove x_i identifica il giudizio attribuito al criterio i per l'opera in esame.

Si associa al valore di Tr_{min} un punto identificato dal vettore che assume, per tutti i criteri, i valori minimi che si possono attribuire all'indice:

Si calcola quindi la distanza massima D_{mex} tra il punto ideale che rappresenta Tr_{mex} ed il punto O che rappresenta $Tr_{min,}$:

$$D_{\text{max}} = \sqrt{\left(\sum_{i} (x_{\text{imax}} - x_{\text{imin}})^{2}\right)}$$

Il tempo di ritorno di riferimento per l'opera in esame può essere espresso in relazione alla proporzionalità delle due distanze individuate:

$$Tr = Tr_{max} - (Tr_{max} - Tr_{min})D/D_{max}$$

Determinato in questo modo Tr_{calcolo} si adotta, per le valutazioni di portata e precipitazione di progetto, il tempo di ritorno della classe nella quale esso ricade e che può assumersi come segue:

classe 1	Tr=10 anni	per Tr _{calcoto} <15
classe 2	Tr=20 anni	per 15<=Tr _{celcolo} <25
classe 3	Tr=30 anni	per 25<=Tr _{calcolo} <40
classe 4	Tr=50 anni	per 40<=Tr _{calcolo} <60
classe 5	Tr=100 anni	Tr _{celcole} >=60

Nelle elaborazioni di segulto riportate si determina un valore del Tempo di Ritorno pari a 16,18 anni, ricadente in classe 2.

Si assume pertanto un Tempo di Ritorno pari a 20 anni.

3. STIMA DELLE PORTATE METEORICHE

3.1. Le superfici scolanti

Come accennato in premessa, l'area di intervento presenta un'estensione molto elevata dell'ordine dei 60 ettari. Tale superficie si inserisce all'interno di un contesto naturalistico particolare e complesso che vede da una parte la foce del fiume Piave e l'area lagunare, dall'altra la fascia costiera occupata dalla pineta litoranea.

Anche per tale motivo il progetto prevede la realizzazione di ampie zone a verde nelle quali andranno ad inserirsi in biocchi, sostanzialmente separati, le aree edificate residenziali.

Nel presente paragrafo verrà analizzata più nel dettaglio la trasformazione che il territorio in analisi subirà a seguito dell'urbanizzazione.

Di fatto, da un punto di vista idraulico, saranno considerate nel calcolo solamente le aree che subiscono una trasformazione della destinazione d'uso del suolo.

Le aree a verde possiedono infatti un certo grado di permeabilità e pertanto le acque di precipitazione vengono naturalmente smaltite infiltrandosi nel sottosuolo (solo una limitata porzione, funzione del tipo di vegetazione, della pendenza del suolo, etc defluisce superficialmente).

L'impermeabilizzazione, più o meno spinta, del territorio ha come diretta conseguenza il capovolgimento dei meccanismi di smaltimento delle acque meteoriche: una netta diminuzione dei fenomeni di infiltrazione è controbilanciata da un incremento del ruscellamento superficiale.

Tali acque di superficie dovranno essere opportunamente drenate mediante una rete fognaria di collettamento che allontani i volumi di deflusso, portandoli al ricettore finale (canali naturali o altra rete fognaria).

Le aree edificate sono costituite da terre alte tra loro indipendenti, inseriti all'interno del contesto a verde, le cui viabilità principali si raccordano con le strade di nuova realizzazione.

Poiché, come detto, nel calcolo idraulico saranno considerate le sole aree che subiscono trasformazione territoriale (e quindi nel caso in esame impermeabilizzazione), le superfici di calcolo corrisponderanno alle terre alte, ai parcheggi ed alla viabilità di collegamento.

Una volta individuate le superfici scolanti sono state perimetrate e stimate le aree a diversa destinazione d'uso (cui corrisponde ovviamente un diverso grado di permeabilità). I risultati sono riassunti nelle tabelle riportate nelle pagine seguenti, dove viene inoltre riportato un confronto dello stato attuale con la configurazione di progetto.

(^{**};

 $(\hat{\ })$

 \bigcirc

.

1. 16.11	SOTTOBACINI SCOLANTI PRINCIPAL		
		Sup.	Sup.
Daning	Contributi	Territoriale	Trasformati
Bacino	<u> </u>	(mq)	(mq)
A	Vlabilità + Parcheggi (4+5+12) + Terre alte (5+6+7+8+9)	147.800	75.620
	Viabilitá + Parcheggi (1+2+3+8+9+10+11)	35.590	29.310
	Viabilità + Terre alte (1+2)	52.220	25.065
<u>D</u>	Viabilità + + Terre alte (3+4)	84.295	45.730
E	Viabilità + Parcheggi (6+7+13) + Terre alte (10+11)	141.700	65.898

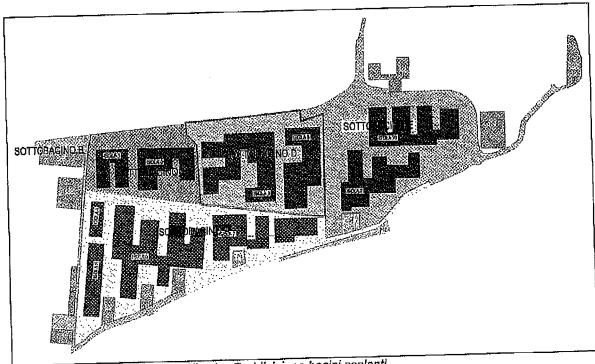


Fig. 1 – Suddivisione bacini scolanti

3.2. Determinazione del coefficiente di deflusso

Il coefficiente di deflusso ϕ è il parametro che determina la trasformazione degli afflussi in deflussi. Il coefficiente di deflusso è determinato infatti come il rapporto tra il volume defluito attraverso una assegnata sezione in un definito intervallo di tempo e il volume meteorico precipitato nell'intervallo stesso. Il coefficiente di deflusso viene valutato considerando le caratteristiche di permeabilità delle diverse superfici presenti nell'intero bacino scolante.

La recente pubblicazione "Ciclo delle acque in ambiente costruito" riporta valori del coefficiente di deflusso tratti da un lavoro del Prof. Liesecke, I.G.G., Università di Hannover.

Permeabilità dei vari tipi di rivestimento Tipo superficie raccolta	Coefficiente di deflusso
Tetti a falde	**************************************
Lastricature con fughe ermetiche	1,00
Rivestimenti bituminosi	1,00
	0,90
Coperture plane con ghialetto	0,80
Lastricature miste, clinker, piastrelle	0,70
Lastricature medio/grandi con fughe aperte	
Asfalto poroso	0,60
Rivestimenti drenanti, superfici a ghialetto	0,50÷0,40
Griglie in calcestruzzo	0,50÷0,40
	0,30+0,20
Coperture piane seminate a erba	0,30÷0,20
Prati	
rati di campi sportivi	0,25
·	0,20÷0,00
uperfici coperte di vegetazione	0,20+0,00

(Fonte: Prof. Liesecke, I.G.G., Università di Hannover) (Da "Ciclo delle acque in ambiente costruito" Prof. E.R. Trevisiol)

Dalla relazione seguente si ricava il valore del coefficiente di deflusso medio ϕ_{medio} :

$$\phi_{medio} = \Sigma_i (S_i \times \phi_i) / S$$

 ϕ_{medio} = coefficiente di deflusso medio relativo alla superficie scolante totale;

S = superficie scolante totale (mq);

 S_i = superfici scolanti omogenee (mq);

 ϕ_i = coefficiente di deflusso relativo alle S_i .

()

つうううう

Per il caso di studio in esame, in ragione di quanto precedentemente esposto e tratto dalla bibliografia, si sono assunti nei calcoli idraulici di verifica i seguenti coefficienti di deflusso:

- $\phi_t = 0.80$ per le superfici impermeabili con copertura a verde;
- $\phi 2 = 0.90$ per la viabilità i percorsi e i parcheggi in asfalto o materiale impermeabile;

N.B. A favore di sicurezza si sono considerati gli stalli dei parcheggi in materiale impermeabile (Coefficienti di deflusso 0,90). Nella realtà dovranno invece essere realizzati con materiali permeabili nel rispetto del Piano di Tutela delle Acque.

3.3. Il tempo di corrivazione

Si calcola il tempo di corrivazione per la Configurazione di Progetto.

Per determinare il tempo di corrivazione t_c si deve fare riferimento alla somma:

$$t_c = t_a + t_r$$

in cui t_a è il tempo d'accesso alla rete, sempre di incerta determinazione, variando con la pendenza dell'area, la natura della stessa e il livello di realizzazione dei drenaggi minori, nonché alla altezza della pioggia precedente l'evento critico di progetto.

Recenti studi svolti presso il Politecnico di Milano (Mambretti e Paoletti, 1996) determinano una stima del tempo di accesso a mezzo del modello del condotto equivalente, sviluppato partendo dalla considerazione che il deflusso è in realtà un deflusso in una rete di piccole canalizzazioni incognite (grondaie, cunette, canalette, piccoli condotti) che raccolgono le acque scolanti lungo le singole falde dei tetti e delle strade.

Tali studi hanno condotto, per sottobacini sino a 10 ettari, all'equazione:

$$t_{ai} = ((3600^{(n-1)/4}\ 0.5\ l_i)/(s_i^{0.375}\ (a\ \phi_i\ S_i)^{0.25}))^{4/(n+3)}$$

essendo:

t_{al} = tempo d'accesso dell'i-esimo sottobacino [s];

 l_i = massima lunghezza del deflusso dell'i-esimo sottobacino [m];

 s_i = pendenza media dell'i-esimo sottobacino [m/m];

 ϕ_l = coefficiente di deflusso dell'i-esimo sottobacino [m/m];

S_i = superficie di deflusso dell'i-esimo sottobacino [ha];

a, n = coefficienti dell'equazione di possibilità pluviometrica.

Per la determinazione di l_i viene proposta l'equazione:

$$I_1 = 19.1 (100 \text{ S}_0)^{0.548}$$

 $\langle \hat{} \rangle$

~>

Il tempo di rete t_r , è dato dalla somma dei tempi di percorrenza di ogni singola canalizzazione seguendo il percorso più lungo della rete fognaria; t_r è quindi determinato dal rapporto la lunghezza della rete e la velocità della corrente

$$t_r = \Sigma_i (L_i / V_i)$$

nella quale la sommatoria va estesa a tutti i rami che costituiscono il percorso più lungo.

Nel caso in esame la superficie scolante considerata, per la determinazione del tempo di accesso alia rete, è l'area sottesa dall'intera superficie posta all'estremità di monte del percorso idraulico più lungo. Dai calcoli effettuati e riportati per esteso in allegato è stato valutato il tempo di corrivazione per i diversi sottobacini principali individuati.

3.4. Calcolo delle portate di scolo

Il calcolo della portata, conseguente alla precipitazione assegnata, è stato condotto utilizzando il metodo razionale, noto in Italia come metodo cinematico o del ritardo di corrivazione; il metodo si presta ad essere utilizzato in molti casì e generalmente applicato a bacini scolanti di relativamente limitata estensione. L'ipotesi alla base del metodo cinematico considera che assumendo un tempo di pioggia pari al tempo di corrivazione tutto il bacino contribuisce alla formazione della portata massima.

La condizione tempo di pioggia (t) = tempo di corrivazione (t_c) porta ad un idrogramma di piena avente forma di triangolo isoscele, caratterizzato da un valore massimo della portata doppio di quello medio; in tale ipotesi tutto il bacino scolante considerato contribuisce alla formazione della portata massima.

Con le ipotesi di cui sopra e dalla relazione seguente proposta dal metodo cinematico si ricava il valore della portata meteorica massima relativa al bacino scolante considerato:

$$Q_{mex} = \phi_{medio} Sh/t$$

in cui:

Q_{max} = portata massima (I/s);

 ϕ_{medio} = coefficiente di deflusso medio;

S = superficie scolante totale;

h = altezza di pioggia valutata con l'espressione relativa alla curva di possibilità climatica;

t = tempo di pioggia assunto pari al tempo di corrivazione t_c.

Si determina quindi la portata massima relativa al cinque bacini individuati, considerando un Tempo di Ritorno di 20 anni.

	CALCOLO PORTATA METEORICA (TR = 20)	ANNI)	
Bacino	Contributi	Portata (l/s)	Coef. udometrico (I/ s ha)
Α	Víabilità + Parcheggi (4+5+12) + Terre alte (5+6+7+8+9)	1590	210
В	Viabilità + Parcheggi (1+2+3+8+9+10+11)	1015	346
C	Viabilità + Terre alte (1+2)	790	315
D	Viabilità + Terre alte (3+4)	1140	249
E	Viabilità + Parcheggi (6+7+13) + Terre alte (10+11)	1557	236

4. VERIFICA IDRAULICA – SCALA DELLE PORTATE

Come detto in precedenza saranno realizzati cinque rami principali di scarico a servizio di clascun sottobacino scolante principale.

La verifica idraulica dei tronchi terminali è stata eseguita utilizzando la formula di Gauckler-Strickler del moto uniforme, per regimi a pelo libero si ottiene la seguente formula:

$$V = K_s \cdot (R_h)^{2/3} \cdot (i)^{1/2}$$
 (m/s)

dove:

V = velocità di scorrimento nella tubazione (m/s)

 K_s = coefficiente di scabrezza di Strickler 70 m $^{1/3}$ s $^{-1}$

i = pendenza della tubazione (%)

 $R_h = \text{raggio idraulico} = D/4 \text{ (m)}$

D = diametro interno (mm)

In tabella seguente si evidenziano le portate in grado di defluire per gradi di riempimento delle stesse prossimi a quelli corrispondenti alla portata meteorica stimata per un tempo di ritorno di 20 anni.

	VERIFICA II	DRAULICA TRATT		FAINVIEAL	
TRATTO	DIAMETRO	PENDENZA	Y/D	Q max	Q meteorica
	(cm)	(1/1000)	(≈)	(I/s)	(l/s)
200-F1	140	1,5	0,70	2225	1590
100-102	120	1,5	0,65	1475	1015
400-420	100	1,5	0,70	907	790
500-520	120	1,5	0,65	1475	1140
300-370	140	1,5	0,75	2225	1557

(n allegato sono riportati per completezza di trattazione i calcoli idraulici e la scala delle portate delle condotte principali di progetto di cui alla tabella sopra riportata.

5. MITIGAZIONE IDRAULICA

La realizzazione di nuove aree urbanizzate su terreni in precedenza agricoli comporta l'impermeabilizzazione, in diverso grado, del territorio.

Nel caso di terreno a verde o agricolo, il meccanismo principale per lo smaltimento delle acque di pioggia è l'infiltrazione nel sottosuolo, e limitatamente, in funzione del tipo di terreno e del tipo di coltivazione, il ruscellamento superficiale.

Chlaramente, la realizzazione di aree impermeabili quali edifici, strade, marciapiedi, piazzati comporta l'impossibilità alla pioggia di infiltrarsi nel terreno e pertanto sarà costretta a defluire superficialmente. Da questa descrizione molto schematica dei fenomeni idraulici si conclude che generalmente l'urbanizzazione su elevata scala comporta l'alterazione del naturale bilancio idrologico.

A causa dell'antropizzazione degli ultimi anni, spesso non controllata o non sensibile a contromisure per preservare l'ambiente circostante, le reti di drenaggio, sia naturali che artificiali, versano in buona parte in condizioni di sofferenza.

Per tale motivo la normativa recente ha imposto, per le variante urbanistiche o PAT o PATI, sulla base del principio dell'invarianza idraulica, che ove vi fosse una considerevole trasformazione d'uso del territorio (in sostanza quindi del grado di permeabilità del suolo) si dovessero adottare delle contromisure per mantenere lo stato di fatto idraulico.

Ciò si ottiene solitamente mediante la realizzazione di dispositivi in grado di trattenere i volumi d'acqua in eccesso, rilasciandoli nel lungo periodo con lo stesso ordine di grandezza del deflusso antecedente l'urbanizzazione.

Nel caso in esame si è supposto di pensare preliminarmente a delle misure atte a compensare l'incremento della superficie coperta rispetto allo stato di fatto.

Vista la configurazione di progetto, si ritiene che la compensazione possa essere effettuata limitando l'intervento alle ampie aree a verde esistenti tra le aree residenziali. Tali aree, risultano naturalmente ribassate rispetto alla quota stradale di progetto e quindi idonee per una loro eventuale sommersione in caso di evento piovoso critico.

Pertanto in corrispondenza di eventi di precipitazione di una certa intensità possono fungere da aree di accumulo temporaneo dei volumi di pioggia in eccesso, che saranno poi rilasciati nella rete idrografica superficiale nel lungo periodo.

Tali aspetti dovranno comunque essere approfonditi a livelli più avanzati di progettazione in accordo inoltre con le linee guida del competente Consorzio di Bonifica Basso Piave.

()

6. DESCRIZIONE DELLA RETE FOGNARIA ACQUE METEORICHE

6.1. Le condotte

Come detto in precedenza saranno realizzate reti di fognatura separata a servizio ciascuna dei diversi sottobacini scolanti soggetti a trasformazione territoriale.

Si ricorda che il presente studio ha carattere preliminare, quindi un maggior dettaglio sarà previsto nei successivi gradi di progettazione. Il tracciato planimetrico di ipotesi preliminare per i collettori è rappresentato nelle tavole in allegato.

Recapito finale per l'intera rete meteorica è previsto nel canale Cortellazzo. Si dovrà valutare in sede di progettazione definitiva l'eventuale inserimento di porte a vento.

Sono previste condotte in calcestruzzo a base piana con giunto a bicchiere di diametro variabile dal 140 cm, 120 cm, 80 cm, 60 cm per finire con diametri del 40 cm per i tratti minori. Non sono previste condotte con diametri inferiori al DN 40 cm. E' prevista la posa di una linea scatolare delle dimensioni 200x150 cm da posarsi lungo via Cigno Bianco per tombinare lo scolo esistente mantenendo l'attuale sezione idraulica.

6.2. I pozzetti di ispezione stradale

In tutti i collettori è prevista la posa in opera di manufatti che garantiscano l'adeguato deflusso idraulico, facilitino l'Ispezione e l'eventuale manutenzione delle tubazioni. Si prevede di posare dei pozzetti realizzati in calcestruzzo vibrato di cemento, formati da elementi sovrapposti quali l'elemento di base e gli elementi di prolunga, di due fori di linea e fori ulteriori per gli eventuali altri innesti. In particolare si prevede di posare due diversi tipi di pozzetto in funzione del diametro delle condotte (l'altezza è variabile in funzione della quota di scorrimento e della quota stradale):

- Tipo 1: dimensioni interne 200x200 cm per condotte Фі 140 cm е Фі 120 cm;
- Tipo 2: dimensioni interne 150x150 cm per condatte Фі 100 cm е Фі 80 cm;
- Tipo 3; dimensioni interne 100x100 cm per condotte Фі 60 cm е Фі 40 cm.

L'interasse tra i pozzetti è variabile a seconda dello sviluppo planimetrico della rete.

E' prevista la posa di chiusini circolari in ghisa sferoidale, aventi una luce netta di 60 cm a norma UNI 108, idonei al transito di qualsiasi tipo di velcolo e di resistenza a norma UNI-EN 124 lasse D 400 minima; tali chiusini saranno posti in opera sui pozzetti di linea e di incrocio dei collettori principali.

6.3. Gli allacciamenti delle terre alte

Il presente progetto comprende anche la predisposizione delle opere di allacciamento alla fognatura meteorica delle utenze private. A tal fine si prevede la realizzazione di una rete secondaria, che dovrà essere dimensionata con attenzione in sede di progetto definitivo.

6.4. Le caditole stradali

E' prevista la posa di pozzetti, con caditoia stradale 40x40x60 cm e griglia in ghisa, sifonati prefabbricati costituiti da curve a gomito in PVC estraibili e allacciati con tubo in PVC De 160 mm ai pozzetti di ispezione stradali. In sede di progetto definitivo dovrà essere indicata la posizione delle caditoie stradali.

 $\langle \tilde{} \rangle$

()

7. DIMENSIONAMENTO VASCHE DI PRIMA PIOGGIA

Nel presente studio si è infine ritenuto opportuno inserire il predimensionamento delle vasche di prima pioggia a servizio delle aree pavimentate poste a servizio della futura edificazione.

Nei periodi di assenza delle precipitazioni, l'atmosfera si carica di sostanze residuali, tendenzialmente inquinanti e di diversa tipologia e dimensione, derivanti dalle attività civili ed industriali. Parte di queste sostanze si deposita sul suolo, parte rimane in sospensione.

E' evidente che l'innescarsi della precipitazione comporta il trascinamento di tali sostanze da parte delle gocce di pioggia e il conseguente dilavamento delle superfici pavimentate. Queste acque, che presentano consistenti carichi inquinanti, poiché concentrati, sono definite come acque di prima pioggia.

Il processo di "depurazione" appena descritto ha carattere transitorio, dopo di che le acque defluenti possono ritenersi pulite e scaricabili, previo collettamento, nella rete di raccolta acque meteoriche di progetto, senza timore di possibile inquinamento.

Per minimizzare l'impatto di carichi inquinanti, si rende quindi necessario trattare le acque di prima pioggia prima di inviarle allo scarico: esse vengono inviate agli impianti di raccolta dove avviene la separazione da sostanze grasse e solidi sedimentabili.

La stima del volume di prima pioggia viene effettuata considerando l'invaso proveniente dal lavaggio delle superfici occupate dal capannoni e dai piazzali asfaltati o in cemento, che sono le superfici soggette al maggior deposito di carico inquinante.

La definizione di acque di prima pioggia è generalmente riferita all'art. 20 della Legge n. 62, 27 maggio 1985, della Regione Lombardia (una delle poche ad aver stabilito una normativa al riguardo): sono definite acque di prima pioggia quelle corrispondenti per ogni evento meteorico a una precipitazione di 5 mm (pari a 50 mc/ha) uniformemente distribuita sull'intera superficie scolante servita dalla rete di drenaggio.

li volume delle vasche è stato calcolato considerando di raccogliere 5 mm (50 mc/ha) di pioggia.

Il funzionamento dell'impianto avviene nel modo seguente.

L'acqua di scarico raccolta dalle caditoie viene recapitata arriva all'implanto attraversando il pozzetto scolmatore (per la separazione delle acque di seconda pioggia) ed affluirà nella vasca di raccolta e stoccaggio fino a riempiria. Per decantazione vengono separate sabble, terricci e tutti gli altri materiali sedimentabili, trascinati dall'acqua, le quali si accumulando sul fondo della vasca stessa.

Nella tubazione di ingresso è inserito un tappo otturatore con galleggiante che chiuderà l'accesso quando il colmo della vasca viene raggiunto a seguito della precipitazione. Il galleggiate poi azionerà un orologio, il quale dopo un fissato intervallo di tempo farà avviare un'elettropompa sommersa che trasferirà per sollevamento tutta l'acqua verso la rete fognaria nera.

Per quanto riguarda il caso in esame sono state ipotizzate 13 vasche di prima pioggia, una a servizio di ogni parcheggio. Le dimensioni, riportate negli schemi grafici, sono funzione della superficie impermeabile di cui raccolgono il contributo.

/PP	Area	Superficie trattata	Volume	Volume
	scolante	(mq)	minimo richiesto	assegnato
			(mc)	(mc)
1	Parcheggio 1	2220	11,10	15
2	Parcheggio 2	1980	9,90	10
3	Parcheggio 3	1960	9,80	10
4	Parcheggio 4	1240	6,20	10
5	Parcheggio 5	2420	12,10	15
6	Parcheggio 6	6000	30	30
7	Parcheggio 7	4560	22,80	25
8	Parcheggio 8	2000	10	10
9	Parcheggio 9	2000	10	10
10	Parcheggio 10	5360	26,80	
11	Parcheggio 11	4500	22,50	30
12	Parcheggio 12	3790		25
13		·	18,95	20
10	Parcheggio 13	4300	21,50	25

PARTE TERZA – RETE FOGNARIA NERA

1. CARATTERISTICHE GENERALI DELLA RETE

La suddivisione in sottobacini effettuata per la rete meteorica, a grandi linee, viene ricalcata anche per il dimensionamento della rete acque reflue.

Ovviamente polché il sistema di collettamento è di tipo "separato", e la portata acque nere è calcolata in tempo secco, l'estensione delle superfici non è di interesse.

La suddivisione dei sottobacini ha pertanto carattere indicativo, per evidenziare le aree di influenza di ogni sottorete che verrà realizzata.

Di particolare importanza invece risulta essere il numero di abitanti insediabili nelle singole terre alte o il numero di abitanti equivalenti relativo agli impianti sportivi.

Per evitare le intersezioni con la rete bianca le condotte della rete nera saranno posate ad un certa profondità (i tratti di monte delle reti principali hanno quota di scorrimento dell'ordine di 1,30 ÷1,50 m al di sotto della quota stradale di progetto).

Considerando inoltre la lunghezza e la pendenza della livelletta di fondo, pari a 2,50÷3,00 ‰, si arriva, a valle, a quote di scorrimento che rendono necessaria la realizzazione di impianti di sollevamento.

Pertanto, prima dell'immissione nella rete principale, saranno realizzati degli impianti di sollevamento, denominati IS1, IS2, IS3.

La condotta principale al di sotto della viabilità sud sarà caratterizzata da diametro Φi 40 cm e raccoglierà i contributi provenienti dagli altri impianti di sollevamento nonché da una porzione dell'abitato di Cortellazzo.

Tale schema in cul si richiede di potenziare la dorsale con una condotta di diametro minimo di 40 cm è stato richiesto dai tecnici ASI (Ente Gestore del Servizio Fognatura) per permettere la diversione dei reflui provenienti dall'abitato posto a nord che attualmente è collettato, tramite una condotta in pressione, ad una rete fognaria di tipo misto.

Allo stato attuale, esiste infatti una condotta premente di fognatura nera che sarà deviata e innestata, in prima ipotesi in corrispondenza della sezione di testa, sulla rete di progetto.

La portata generata dall'abitato posto nord è stata valutata stimando un numero di abitanti equivalenti parl a 1.000.

Nella condotta Фі 40 cm recapiteranno pertanto I reflui nell'impianto di sollevamento di progetto denominato IS1, che sarà il maggiore in progetto.

Infine, a gravità, a partire dall'impianto IS1 i reflui rilanciati e quelli provenienti dall'area sportiva saranno inviati alla rete esistente, in particolare all'impianto di sollevamento esistente denominato S in pianimetria.

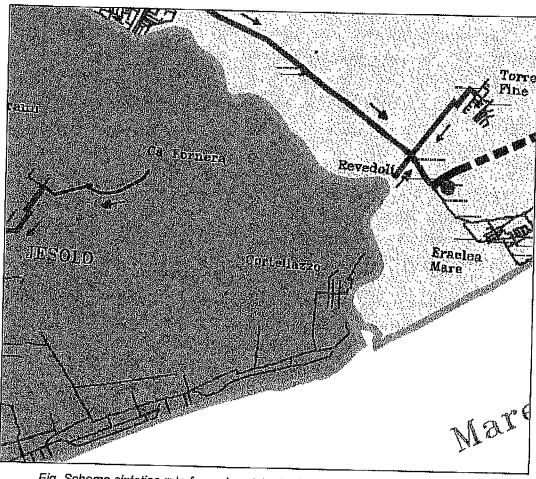


Fig. Schema sintetico rete fognaria esistente (Fonte ASI – Cartografia della rete)

(

 $\langle \hat{\ } \rangle$

(")

 \bigcirc

2. DETERMINAZIONE DELLA PORTATA ACQUE NERE

La portata acque nere assunta per la verifica idraulica dei collettori principali è stata calcolata con riferimento agli utenti dell'acquedotto e cioè al numero degli abitanti insediabili nei lotti di progetto, sulla base della seguente formula di calcolo:

$$Q_{media} = (D \cdot \phi \cdot N) / (n_{ore} 3600) \qquad (1/s)$$

dove:

Q_{media} = portata nera media (l/s);

D = dotazione idrica media pro capite giornaliera = 300 l/ab x giorno;

 $\phi=$ coefficiente di affiusso alla rete = 0,80

N = numero dl abitanti serviti = variabile

 n_{ore} = ore di consumo della risorsa idrica = 24

La portata per abitante erogata da un acquedotto nel giorno di massimo consumo è pari alla dotazione giornaliera moltiplicata per un coefficiente di punta p_g , al quale, in mancanza di misure dirette o ragionevoli confronti, può essere assegnato un valore dell'ordine di 1,2+1,5 (valendo il coefficiente minore per grandi centri e quello maggiore per piccoli centri).

Ugualmente, nell'ora di punta del giorno di massimo consumo, la portata (per abitante) erogata si assume pari a quella giornaliera del giorno stesso a sua volta moltiplicata per un coefficiente di punta orario p_0 , che in assenza di osservazioni dirette o ragionevoli confronti, può essere assegnato un valore dell'ordine di 1,2+1,5 (valendo ancora il coefficiente minore per grandi centri e quello maggiore per piccoli centri).

La portata di punta può pertanto essere calcolata considerando la seguente espressione:

$$Q_0 = \rho_g \cdot \rho_0 \cdot Q_{madia}$$

Trattandosi di piccoli centri, sia il valore di ρ_θ che quello di ρ_0 sono stati assunti pari a 1,5. I risultati ottenuti sono esplicitati nei calcoli in allegato.

Verificando i valori di portata di punta si deduce che gli <u>impianti di sollevamento minori</u> (IS2, IS3) saranno dimensionati per sollevare una portata massima di 5 l/s. I due impianti saranno realizzati con le stesse caratteristiche geometriche e con le stesse tipologie di pompe.

Come detto <u>l'impianto di sollevamento di valle. IS1</u> raccoglie i contributi degli altri impianti di sollevamento e dell'abitato di Cortellazzo.

La portata complessiva all'impianto IS1 è stata pertanto calcolata considerando la portata totale proveniente dalle terre alte poste a sud e dall'abitato di Cortellazzo ed è riportata nella tabella precedente. L'impianto è stato dimensionato per una portata di sollevamento di circa 20 l/s. A partire dall'impianto IS1 la rete procede poi per gravità verso il recapito finale, costituito dall'impianto di sollevamento esistente denominato S.

(")

ののつううううう

3. VERIFICA DELL'AZIONE AUTOPULENTE

Le esperienze e ricerche specifiche sulle modalità di deposito delle particelle solide presenti nei normali liquami urbani hanno dimostrato che per assicurare il trasporto nelle condotte, cioè condizioni di autopulizia nelle stesse è necessario che lo sforzo di taglio τ , indicata in questo caso $\tau_{\rm c}$, non sia inferiore (nel flusso a sezione piena) a 0,1 kg/mq.

L'espressione idrodinamica di " $au_{
m c}$ " è:

$$\tau_c = \gamma \cdot R_h \cdot i$$

in cui:

ア = peso specifico del liquame

 R_h = raggio idraulico

i = pendenza di fondo della condotta

Analizzando le condizioni di moto a sezione piena con la formula monomia di Gauckler-Strickler:

$$V = K_s \cdot (R_h)^{2/3} \cdot (l)^{1/2}$$
 (m/s)

E sostituendo "t" tra le espressioni citate si ottiene il valore di velocità al di sotto della quale può verificarsi deposito per un prefissato τ_c .

L'espressione evidenzla la dipendenza della velocità dal raggio idraulico e quindi cresce con la sezione del tubo. Il tutto nella condizione di flusso a sezione piena.

Come già detto in premessa il τ_c si mantiene pressoché costante fino a livelli di riempimento pari al 20% del diametro e quindi con portate fino a 0,1 Q_{max} .

La pendenza delle condotte è stabilita in un valore del 2,5 ‰ per il solo tratto con diametro фі 40 cm e del 3,0 ‰ per i rimanenti tratti con diametro фі 25 cm .

In allegato sono indicati i valori limite di funzionamento e i calcoli idraulici di dettaglio.

4. VERIFICA IDRAULICA - SCALA DELLE PORTATE

Utilizzando la formula di Gauckler-Strickler del moto uniforme, per regimi a pelo libero si ottiene la seguente formula:

$$V = K_s \cdot (R_h)^{2/3} \cdot (i)^{1/2}$$
 (m/s)

dove;

V = velocità di scorrimento nella tubazione (m/s)

 K_s = coefficiente di scabrezza di Strickler 90 m^{1/3}s⁻¹

i = pendenza della tubazione (%)

 R_h = raggio idraulico = D/4 (m)

D = diametro interno (mm)

In allegato sono riportati per completezza di trattazione i calcoli idraulici e la scala delle portate delle condotte principali di progetto.

5. DESCRIZIONE DELLA RETE FOGNARIA ACQUE NERE

5.1. Le condotte a gravità

Le condotte della nuova fognatura acque nere a gravità sono previste in grès ceramico con giunto a bicchiere e guarnizione di tenuta in polluretano conformi alla norma UNI EN 295 "Tubi ed elementi complementari di grès e relativi sistemi di giunzione destinati alla realizzazione di impianti di raccolta e smaltimento liquami".

La pendenza delle condotte è stabilita în un valore del 2,5 $\,\%$ per i tratti con diametro $\,\Phi$ 40 cm e del 3,0 $\,\%$ per i tratti con diametro $\,\Phi$ 25 cm .

Per semplicità, verranno di segulto indicate, per ogni tronco principale, le caratteristiche geometriche principali della rete fognaria nera.

Si ricorda che il presente studio ha carattere preliminare, quindi un maggior dettaglio sarà previsto nei successivi gradi di progettazione. Il tracciato planimetrico di ipotesi preliminare per i collettori è rappresentato nelle tavole in allegato.

Si riassumono le caratteristiche principali della rete di progetto (per la distribuzione planoaltimetrica delle condotte si rimanda alle tavole grafiche allegate):

- Tratto principale: Фі 40 cm, gres ceramico pendenza 2,5 ‰;
- Tratto secondarí: Фі 25 cm, gres ceramico pendenza 3,0 ‰;

5.2. I pozzetti di ispezione stradale

In tutti i collettori è prevista la posa in opera di manufatti che garantiscano l'adeguato deflusso idraulico, facilitino l'Ispezione e l'eventuale manutenzione delle tubazioni.

Si prevede di posare dei pozzetti di ispezione stradali circolari, realizzati in calcestruzzo vibrato di cemento ad alta resistenza ai solfati, con spessori di parete non inferiore a 10 cm e con diametro interno della camera di 100 cm, formato da elementi sovrapposti quali l'elemento di base, l'elemento di prolunga, l'elemento di riduzione da 100 cm a 625 mm, l'elemento raggiungi quota, tutti giuntati a maschio/femmina con l'anello di tenuta, di due fori di linea e fori ulteriori per gli eventuali altri innesti. La superficie interna del pozzetto sarà rivestita con resina epossidica.

L'interasse tra i pozzetti è variabile a seconda dello sviluppo planimetrico della rete. E' prevista la posa di chiusini circolari in ghisa sferoidale, aventi una luce netta di 60 cm a norma UNI 108, idonei al transito di qualsiasi tipo di veicolo e di resistenza a norma UNI-EN 124 classe D 400 minima; tali chiusini saranno posti in opera sui pozzetti di linea e di incrocio dei collettori principali.

5.3. Gli allacciamenti delle utenze private

Gli allacciamenti degli scarichi sulle condotte principali dovrà avvenire esclusivamente per intersezione con i pozzetti di linea.

A tal fine si prevede la realizzazione di una rete secondaria di sub-collettori in PVC SN 4 - SDR 41 - UNI EN 1401, aventi diametro esterno minimo 160 per abitazioni singole e 200 mm per condomini e corredati di raccordi e pezzi speciali atti a consentire ogni tipo di innesto. E' prevista la posa di pozzetti prefabbricati 100x100 cm da posizionare in corrispondenza dei recapiti, in calcestruzzo vibrato ad alta resistenza, completi di fori e delle relative guarnizioni, dotati di chiusini quadrati in ghisa sferoidale, i chiusini in ghisa saranno di classe D 400 minima della norma UNI-EN 124.

 $\langle \cdot \rangle$

r^{m.}.;

6. IMPIANTO DI SOLLEVAMENTO IS1

6.1. Dimensionamento elettropompe

Nel presente paragrafo verrà effettuato il dimensionamento dell'impianto di sollevamento IS1, a valle della rete che raccoglie pertanto il contributo di tutta l'area di nuova realizzazione e dell'abitato di Cortellazzo.

Per i calcolì idraulici relativi alla determinazione della prevalenza manometrica totale da assegnare alle pompe e, di conseguenza, al dimensionamento dell'impianto di sollevamento di progetto, si è partiti dall'ipotesi di moto in regime permanente uniforme. Ciò premesso, le caratteristiche geodetiche e funzionali dell'impianto previsto si possono così sintetizzare:

IZIONALI IMPIAN	ITO
ΔH_g (m)	~3,00
∆H _g (m)	-4,20
L (m)	10,0
	⊿H _g (m)

Con il valore del dislivello geodetico si è indicato la massima quota altimetrica da superare, pari alla differenza tra la quota più alta del collettore in pressione e la quota (minima e massima) che il refluo raggiunge all'interno del pozzo di sollevamento.

Definito quindi il valore del dislivello geodetico da superare, la prevalenza manometrica totale delle elettropompe è stata determinata mediante la relazione:

$$H = \Delta Z + (i \times L) + \sum \Delta H_c = \Delta Z + \Delta H_{tot}$$

dove:

ΔZ =dislivello geodetico massimo;

 ΔH_{tot} =perdite di carico totali (continue e localizzate).

Le perdite di carico continue lungo la colonna di mandata e lungo la condotta premente sono state calcolate con la nota relazione di Darcy-Weisbach:

$$i = \frac{f}{D} \times \frac{V^2}{2g}$$

dove:

f

= coeff. di scabrezza;

D = diametro della condotta;

v = velocità;

j = pendenza linea dell'energia.

Il valore del coeff. di scabrezza "f" in condizioni di esercizio è stato stimato con la nota relazione di Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2,00 \times \log \left(\frac{2,51}{\text{Rex } \sqrt{f}} \times \frac{e/D}{3,71} \right)$$

assumendo un valore della scabrezza assoluta "e" pari a 0,01 mm, caratterístico per condotte in pressione in PEAD.

Le perdite di carico concentrate nelle valvole e nei punti di raccordo sono stati invece calcolati mediante la relazione;

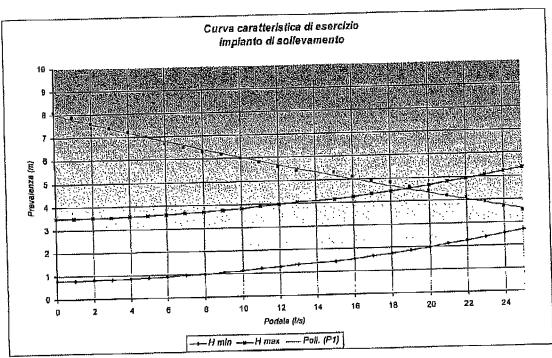
$$\Delta H_c = \xi \times \frac{V^2}{2g}$$

dove: ΔH_c = perdita di carico localizzata;

V = velocità nella condotta di mandata;

 ξ = coefficiente di perdita di carico localizzata

l valori di " ξ ", per le diverse singolarità idrauliche considerate (Imbocco, sbocco, curva a 90°, saracinesca, valvola di ritegno, ecc.) sono stati determinati sulla base dei dati correnti di letteratura.


Di seguito sono riportati i dati caratteristici di funzionamento (portata - prevalenza - potenza), riferiti al punto di lavoro individuato, indicato nel grafico che segue:

Numero elettropompe installate	П	T 9
Numero elettropompe ridondanti	n	1
Portata sollevata da una pompa	Qs (l/s)	20,00
Prevalenza totale	ΔHp (m)	4,20
Potenza assorbita singola pompa	Ps (kW)	1,70
Potenza complessiva richiesta impianto	Pt (kW)	3,40

(")

(*)

Curve di esercizio dell'impianto di sollevamento con pompe di portata 20 l/s.

6.2. Dimensionamento pozzo di alloggiamento

Il dimensionamento dei pozzi di alloggiamento delle elettropompe sommergibili è stato basato sui seguenti parametri/criteri:

- numero massimo di avvii/ora (della pompa) pari a otto;
- valutazione del flusso di pompaggio massimo con riferimento al diagramma caratteristico di esercizio.

Assegnato quindi un appropriato numero di avviamenti/ora, si determina il volume dell'impianto di sollevamento sulla base di una sequenza di attacco-stacco delle pompe denominata "sequenza 2". Essa prevede l'attacco di ogni pompa a un prefissato livello, mentre lo stacco di tutte le pompe avviene quando il livello sia sceso al livello minimo previsto dalla vasca di raccolta.

Il dimensionamento del volume utile da assegnare a ciascuna pompa, all'interno del pozzo di sollevamento, è stato calcolato mediante la formula:

$$V_u = \frac{Q_p \times T_c}{4}$$

dove:

V_B = valume del pozzo utile;

T_c = tempo di ciclo (Intervallo di tempo tra due soste della pompa);

 Q_p = portata media sollevata dalla pompa.

Nota la geometria del pozzo di sollevamento, la profondità da assegnare allo stesso è determinata con la relazione:

$$H_u = V_u/\Omega$$

dove:

 $\langle \tilde{} \rangle$

r′>

f")

0000000000

H_u = profondità (altezza utile) del pozzo

 V_u = volume del pozzo utile (vasca di equalizzazione)

 Ω = area utile della sezione trasversale del pozzo di sollevamento

Introducendo, per l'impianto previsto, i dati caratteristici di funzionamento riportati al punto precedente, si ottengono i valori numerici del volume utile d'invaso da assegnare a ciascun pozzo di pompaggio.

Per quanto riguarda <u>il pozzo IS1</u> si prevede di utilizzare manufatti in c.a. delle dimensioni interne nette $2,5 \text{ m} \times 2,0 \text{ m}$ per una profondità utile totale di 1,20 m,

7. IMPIANTI DI SOLLEVAMENTO IS2, IS3

7.1. Dimensionamento elettropompe

Come detto in precedenza i due impianti di sollevamento minori saranno realizzati con le medesime caratteristiche. Per il dimensionamento si considera l'impianto più sfavorevole (quello più lontano con maggior lunghezza della condotta premente).

Per i calcoli idraulici relativi alla determinazione della prevalenza manometrica totale da assegnare alle pompe e, di conseguenza, al dimensionamento dell'impianto di sollevamento di progetto, si è partiti dall'ipotesi di moto in regime permanente uniforme. Ciò premesso, le caratteristiche geodetiche e funzionali dell'impianto previsto si possono così sintetizzare:

CARATTERISTICHE GEODETICHE E FUNZIONALI IMPIANTO IS4			
ΔH_g (m)	~3,00		
ΔH_g (m)	~4,20		
L (m)	10,0		
	ΔH_g (m) ΔH_g (m)		

Con il valore del dislivello geodetico si è indicato la massima quota altimetrica da superare, pari alla differenza tra la quota più alta del collettore in pressione e la quota (minima e massima) che il refluo raggiunge all'interno del pozzo di sollevamento.

Definito quindi il valore del dislivello geodetico da superare, la prevalenza manometrica totale delle elettropompe è stata determinata mediante la relazione:

$$H = \Delta Z + (i \times L) + \sum \Delta H_c = \Delta Z + \Delta H_{lot}$$

dove:

ΔZ =dislivello geodetico massimo;

ΔH_{tot}=perdite di carico totali (continue e localizzate).

Le perdite di carico continue lungo la colonna di mandata e lungo la condotta premente sono state calcolate con la nota relazione di Darcy-Weisbach:

$$i = \frac{f}{D} \times \frac{V^2}{2g}$$

dove:

f = coeff. di scabrezza;

D = diametro della condotta;

V = velocità;

; = pendenza linea dell'energia.

Il valore del coeff. di scabrezza "f" in condizioni di esercizio è stato stimato con la nota relazione di Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2,00 \times \log \left(\frac{2,51}{\text{Rex } \sqrt{f}} \times \frac{e/D}{3,71} \right)$$

assumendo un valore della scabrezza assoluta "e" pari a 0,01 mm, caratteristico per condotte in pressione in PEAD.

Le perdite di carico concentrate nelle valvole e nei punti di raccordo sono stati invece calcolati mediante la relazione:

$$\Delta H_c = \xi \times \frac{V^2}{2g}$$

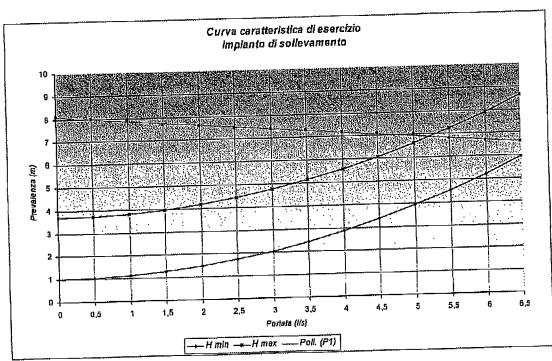
dove: ΔH_c = perdita di carico localizzata;

V = velocità nella condotta di mandata;

 ξ = coefficiente di perdita di carico localizzata

i valori di "ξ", per le diverse singolarità idrauliche considerate (imbocco, sbocco, curva a 90°, saracinesca, valvola di ritegno, ecc.) sono stati determinati sulla base dei dati correnti di letteratura.

Di seguito sono riportati i dati caratteristici di funzionamento (portata - prevalenza - potenza), riferiti al punto di lavoro individuato, indicato nel grafico che segue:


n	7 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1
- 11	2
n	1
Qs (l/s)	5,00
ΔHp (m)	5,00
	1,30
Pt (kW)	1,00
	ΔHp (m) Ps (kW)

<u>(</u>_)

()

00000000000

Curve di esercizio dell'impianto di sollevamento con pompe di portata 5 l/s.

7.2. Dimensionamento pozzo di alloggiamento

Il dimensionamento dei pozzi di alloggiamento delle elettropompe sommergibili è stato basato sui seguenti parametri/criteri:

- numero massimo di avvii/ora (della pompa) pari a otto;
- valutazione del flusso di pompaggio massimo con riferimento al diagramma caratteristico di esercizio.

Assegnato quindi un appropriato numero di avviamenti/ora, si determina il volume dell'impianto di sollevamento sulla base di una sequenza di attacco-stacco delle pompe denominata "sequenza 2 ".

Essa prevede l'attacco di ogni pompa a un prefissato livello , mentre lo stacco di tutte le pompe avviene quando il livello sla sceso al livello minimo previsto dalla vasca di raccolta.

Il dimensionamento del volume utile da assegnare a ciascuna pompa, all'interno del pozzo di sollevamento, è stato calcolato mediante la formula:

$$V_u = \frac{Q_p \times T_c}{4}$$

dove: V_u = volume del pozzo utile;

 T_{c} = tempo di ciclo (intervallo di tempo tra due soste della pompa);

 Q_p = portata media sollevata dalla pompa.

Nota la geometria del pozzo di sollevamento, la profondità da assegnare allo stesso è determinata con la relazione:

$$H_u = V_u/\Omega$$

dove:

 C_i

 H_u = profondità (altezza utile) del pozzo

 V_u = volume del pozzo utile (vasca di equalizzazione)

 Ω = area utile della sezione trasversale del pozzo di sollevamento

introducendo, per l'impianto previsto, i dati caratteristici di funzionamento riportati al punto precedente, si ottengono i valori numerici del volume utile d'invaso da assegnare a ciascun pozzo di pompaggio.

Per quanto riguarda <u>i pozzi IS2 e IS3</u> si prevede di utilizzare manufatti in c.a. delle dimensioni interne nette 2,0 m x 2,0 m per una profondità utile totale di 1,20 m.

ALLEGATI

1. VERIFICA IDRAULICA RETE ACQUE METEORICHE

- Allegato 1: Determinazione del Tempo di Ritorno;
- Allegato 2: Stima portata meteorica;
- Allegato 3: Verifica condotte principali scala delle portate;
- Allegato 4: Dimensionamento vasche di prima pioggia.

2. VERIFICA IDRAULICA RETE FOGNARIA NERA

- Allegato 5; Calcolo del carico idraulico portata nera;
- Allegato 6: Verifica azione autopulente;
- Allegato 7: Verifica condotte principali scala delle portate;
- Allegato 8: Predimensionamento impianti di sollevamento.

DETERMINAZIONE DEL TEMPO DI RITORNO

OPERA IDRAULICA DA DIMENSIONARE

TIPOLOGIA DI AMBITO	Rete di fognatura acque meteoriche Piano Urbanistico Attuativo Orizzonte Nuovo
	Comune di Jesolo WEN

TABELLA - Tempi di ritorno (Tr) in funzione della tipologia

TIPOLOGIA DI APPE			
TIPOLOGIA DI OPERA IDRAULICA Fogneture	Tr (min)	Tr (max)	
	(anni)	(anni)	
a. Collettori acque bianche o miste b. Collettori principali di trasferimento	10	30	
c. Solievamenti e condotte prementi	10	50	
d. Vasche di laminazione	10	50	
- TOTAL MARKET THE STATE OF THE	10	50	

CRITERIO PER IL DIMENSIONAMENTO DELLE OPERE IDRAULICHE

Le opere idrauliche vengono classificate in relazione ad una serie di criteri che possano fornire un orientamento preciso sui tempi di ritomo per il dimensionamento all interno dell'intervallo evidenziato nella fabella sopra riportata.

- criteri riferiti alla tipologia delle opere
- criterio della modificazione della probabilità del danno dovuta al tipo di opera 1. 2.
- criterio delle dimensioni caratteristiche che non variano al variare dei rischio assunto 3.
- criterio di sito di realizzazione dell'opera, legato al fattore di impatto ecologico
- criterio della capacità residua delle opere di mantenere la funzionalità di progetto
- criteri riferiti alla tipologia del sito dove insiste l'opera B)
- criterio legato all'impatto paesaggistico 5.
- criterio legato ai costi sociali 6.
- criteri riferiti al valore del bene difeso C)
- 7. gli edifici
- 8. gli insediamenti produttivi
- 9, l'agricoftura
- 10. la viabilità
- 11. le infrastrutture

Ad ogni criterio è possibile attribuire un valore qualitativo che indica se il Tr debba essere massimo, medlo, minimo; tale indice è anche esprimibile attraverso un valore numerico

1

TEMPO DI RITORNO	INDICE
massimo	2
medio	1
minimo	O

Tempo di Ritorno

VALORI PROPOSTI PER GLI INDICI TR

VALORI PROPOSTI PER GLI INDICI TR A) criteri riferiti alla tipologia dell	le opere (A'	1, A2, A3, A	4)	
TIPOLOGIA DI OPERA IDRAULICA				A4
F <u>oanature</u>	A1	A2	A3	0
a. Collettori acque blanche o miste	1	1	2	0
b. Collettori principali di trasferimento	2	1	2	0
c. Sollevamenti e condotte prementi	1	0	2 2	0
d. Vasche di laminazione	2	0	2	Ų
B) criteri riferiti alla tipologia de	l sito dove	insiste l'op	era (85, 86	6}
OPERE ENTRO TERRA (Fognature)				55
OPERC LIVING 15.11.				2
CONDIZIONI AMBIENTALI DEL SITO DI	REALIZZA	ZIONE		86
CONDIZIONI AMBIEN FALT DEL GITO BI Città, zone industriali, area interessate da	illa grande v	iabilitä		2
Città, zone industriali, aree interessate de Aree con forme insediative limitate, aree	prevalenten	nente rurali		1
Aree con forme insediative littitate, aree Aree non antropizzate	h			O
TIPOLOGIA DEL BENE DIFE	SO			G7
C) criteri riferiti al valore del be	SO			
<u>Danno evitato agli edifici</u>				0
case sparse e nuclei				1
frazioni				2
centri				C8
Insediamenti produttivi				0
locali				1
regionali				2
nazionali				C9
<u>Agricolture</u>				0
non di pregio				1
di pregio				2
di pregio con serre				C10
<u>Viabilità</u>				0
secondaria				1
secondaria con ponti				2
				C11
principale				
principale <u>Infrastrutture a rete</u>				
				0
Infrastrutture a rete				1 2

Allegato - Catcoli idraulici di Verifica

VALORI ASSEGNATI AGLI INDICI TR PER IL CASO IN ESAME

	CRITERI ASSUNTI	INDICE	Χi
A1	modificazione della probabilità del danno dovuta al tipo di opera	1	X1
A2	dimensioni caratteristiche che non variano al variare del rischio	1	X2
A3	sito di realizzazione dell'opera legato all'impatto ecologico	2	хз
A4	capacità residua delle opere di mantenere la funzionalità	0	X 4
B5	impatto paesaggistico	2	Xδ
B6	costi indotti nella fase di costruzione	1	X6
C7	edifici	1	X7
C8	Insediamenti produttivi	0	X8
C9	agricoltura	0	X 9
C10	viebilità	O	X10
C11	infrastrutture a rete	1	X11

CALCOLO DEL TEMPO DI RITORNO PER L'OPERA IN PROGETTO							
<u>DATI DI INPUT</u>							
TR max	tempo di rit	torno massin	no	30	(anni)		
TR min	tempo di rit	tarno minimo)	10	(anni)		
хí	Xi _{max}	$(xi_{max}-xi)^2$	(xi _{max} -xi _{min}) ²				
1	2	1	4				
1	2	1	4				
2	2	0	4				
0	2	4	4			İ	
2	2	0	4				
1	2	1	4				
1	2	1	4				
0	2 4 4 2 4 4 2 4 4						
0			4				
0			4			ļ	
1	2	1	4				
		21	44				
RISULTATI				-			
D	$(\Sigma(\mathbf{x} _{max}\mathbf{-x}))$	2)0.5	4,58				
Dmax	$(\Sigma(xi_{max}-xi_{m}))$	_{lin}) ²) ^{0.5}	6,63				
Tr calcolat	o		16,18	(anni)			
Posto Tr ca	lcolato come	tempo di rit	omo desunto	dal calcolo,	sarà adoltato per le	į	
valutazioni d	di portata e p	or ecipi tazion	e di progetto,	il tempo di i	itorno Tr della classe		
nella quale	esso ricade	e Indicato in	tabella segu	ente			
classe 1	Tr=10 anni	Tr _{enleolo} <15					
classe 2 Tr=20 anni 15<=Tr _{calcole} <25							

Classe 1	TI=10 anni	
classe 2	Tr=20 anni	15<=Tr _{calcolo} <25
classe 3	Tr=30 anni	25<=Tr _{calcolo} <40
classe 4	Tr¤50 anni	40<=Tr _{calcolo} <60
classe 5	Tr=100 anni	Tr _{calcolo} >=60

İ	TR assunto per il caso in esame	20	(anni)

STIMA PORTATA METEORICA SOTTOBACINO "A"

DATI GENERALI

Comune	Jesolo		1411/11411		
		onte Verde"			
Piano					
Ambita	SOTTOBAC				
Contributi	VIABILITA'	+ PARCHEG	GI (4+5+12)) + ISOLE (4+	5+6+7)
S.T (mg)	147 800	(Superficie	territoriale to	itale sottobaci	no)
S (mq)	75 620	(Quota supe	erficie sottob	acino soggett	a a trasformazione)
S (ha)	7,56				
S (kmg)	0,07562				
Tr	Y(Tr)	H(x)	n(x)	a	
10	2,250	25	0,27	47,50	
20	2,970	25	0,27	54,70	
50	3,902	25	0,27	64,02	
PARAMETR	I DELLA CUR	VA DI POSS	IBILITA PI	UVIOMETRIC	A (JESOLO)
Tr (anni)	. 5223 (10	20	50	,
a		47,504	54,702	64,019	
π		0,27	0,27	0,27	

CALCOLO COEFFICIENTE DI DEFLUSSO

Superfici	Ŝi	jii	Six φ
Destinazione (*)			
Viabilità	7 200	0,90	6 480,00
Parcheggio 4	1 240	0,90	1 116,00
Parcheggio 5	2 420	0,90	2 178,00
Parcheggio 12	3 790	0,90	3 411,00
Isola 4	3 110	0,80	2 488,00
isola 5	7 920	0,80	6 336,00
Isola 6	31 540	0,80	25 232,00
Isola 7	18 400	0,80	14 720,00
Tota	all 75 620	0,81	61 961,00
Valore assunto per Il coefficiente di deflusso medio	0,81		
(*) Valori indicativi da verificare in sede di progetto definitivo/esecutivo			

CALCOLOD	EL TEMPO I	D) CORRIVA	ZIONE (Dal	ltoomles di	BAS1 \			·
Formulazione						nieti)		·····
Tempo di cor						ui a iiij		
Si	li I	///po di 1201	φi	si si	a	-	tai	tai
(mq)	(m)	(m)	,	.	4	n		
75 620	721	721	0,81	0,001	54,70	0,27	(s) 866	(min) 14
II* = massima lun tai = tempo di acc si = pendenza ma Sì = superficie de	cesso dell'iesimo adia dell'Iesimo s	sottobacino	rete at blogello	,				
CALCOLO DE	EL TEMPO D	RETE			Vul	Li	tri	tri
Tratto					(m/s)	(m)	(8)	(min)
1					0,8	721	901	15
						Totale	901	15
CALCOLO DE	L TEMPO DI	CORRIVAZ	IONE					
ta	प्र	tc	tc					
(min)	(min)	(min)	(ore)					
14	15	29	0,48					

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - DATI DI PROGETTO

					_ ~,,,,,	TENOGET		
Tr	φ	a	n	t	t	h	jo	S
20	0,81	54,70	0,27	(min) 29	(ore)	(mm)	(mm/ora)	(mq)
	•	•	0,21	25	0,48	44,87	93,48	75 620

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - RISULTATI

			· INC LODG G	4
Tr	Q	u	V pioggia	
(anni)	(l/s)	(l/s ha)	(mc)	
20	1 590	210	2748	

STIMA PORTATA METEORICA SOTTOBACINO "B"

DATI GENERALI

Comune	Jesolo				
Plano	PUA "Orizz	onte Verde"			
Ambito	SOTTOBAC	INO B			
Contributi	VIABILITA'	+ PARCHEG	Gl (1+2+3+8	3+9+10+11)	
S.T (mg)	35 590	(Superficie t	erritoriale to	tale sottobacii	no)
S (mq)	29 310	(Quota supe	rficie sottob	acino soggett	a a trasformazione)
S (ha)	2,93				İ
S (kmq)	0,02931				
Tr	Y(Tr)	H(x)	n(x)	2	
10	2,250	25	0,27	47,50	
20	2,970	25	0,27	54,70	
50	3,902	25	0,27	64,02	
				0.404ETDIO	A (IEDOLO)
PARAMET	RI DELLA CUF				A (JESOLO)
Tr (anni)		10	20	50	
а		47,504	54,702	64,019	
n		0,27	0,27	0,27	

CALCOLO COEFFICIENTE DI DEFLUSSO

CALCOLO COEFFICIENTE DI DEFLUSSO			Six Ø
Superfici	Si	Ø	GIN JU
Destinazione (*)			
Vlabilità	9 290	0,90	8 361,00
Parcheggio 1	2 220	0,90	1 998,00
Parcheggio 2	1 980	0,90	1 782,00
Percheggia 3	1 960	0,90	1 764,00
Parchegglo 8	2 000	0,90	1 800,00
Parcheggio 9	2 000	0,90	1 800,00
Parcheggio 10	5 360	0,90	4 824,00
Parcheggio 11	4 500	0,90	4 050,00
Tota	ali 29 310	0,90	26 379,00
Valore assunto per il coefficiente di deflusso medio	0,90		
(*) Valon indicativi da verificare in sede di progetto definilivo/esecutivo			<u> </u>

Formulazione	i suggerila ne	l 1997 dal F	'olitecnico di	Milano (Ma.	mbretti e Pa	oletti)		
Tempo di con	rivazione = te	mpo di acce	sso alla rete	+ tempo di	rete	•		
Si	li	li*	arphil	SĪ	а	п	tai	tai
(mq)	(m)	(m)					(a)	(min)
29 310	429	429	0,90	0,001	54,70	0,27	594	9
lai = tempo di acc si = pendenza me SI = superlicie de	esso dell'iesimo dia dell'iesimo s ll'iesimo	sotlobacino otlobacino	rele di progetto	1				
ial = tempo di acc si = pendenza ma si = superficie de CALCOLO DE	esso dell'iesimo dia dell'iesimo s ll'iesimo	sotlobacino otlobacino	rele di progetto	1	Vuj	LI	tri	tri
lai = tempo di acc 3i = pendenza me 31 = superficie de	esso dell'iesimo dia dell'iesimo s ll'iesimo	sotlobacino otlobacino	rele di progello	1	Vui (m/s)	Li (m)	tri (s)	
ial = tempo di acc si = pendenza ma si = superficie de CALCOLO DE	esso dell'iesimo dia dell'iesimo s ll'iesimo	sotlobacino otlobacino	rele di progello	1				
lai = tempo di acc si = pendenza me Si = superficie de CALCOLO DE Tratto	esso dell'iesimo dia dell'iesimo s l'iesimo L TEMPO DI	sottobacino ottobacino RETE		1	(m/s)	(m)	(s)	(min)
lai = tempo di acc si = pendenza me Si = superficie de CALCOLO DE Tratto	esso dell'iesimo dia dell'iesimo s l'iesimo L TEMPO DI	sottobacino ottobacino RETE		1	(m/s)	(m) 429	(s) 536	(min) 8
al = tempo di acc si = pendenza me fil = superficie de CALCOLO DE Tratto 1 CALCOLO DE ta	esso dell'iesimo dia dell'iesimo s l'iesimo L TEMPO DI	sottobacino ottobacino RETE		1	(m/s)	(m) 429	(s) 536	(min) 8
tal = tempo di acc si = pendenza me SI = superficie de CALCOLO DE Tratto 1	esso dell'iesimo dia dell'iesimo s ll'iesimo L TEMPO DI	sottobacino ottobacino RETE CORRIVAZ	IONE	1	(m/s)	(m) 429	(s) 536	(min) 8

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - DATI DI PROGETTO

***					O-DAII D	PRUGE	IU	
Tr	φ	а	п	t	t	h	jo	5
20	0,90	54,70	0,27	(min) 17	(ore) 0,28	(mm) 38,79	(mm/ora) 138,54	(mq) 29 310

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - RISULTATI

			- ME LODO C
Tr	Q	ŭ	V pioggia
(anni)	. (l/s)	(I/s ha)	(mc)
20	1 015	346	1023

STIMA PORTATA METEORICA SOTTOBACINO "C"

DATI GENERALI

DATI GENE					
Comune	Jesolo				
Piano	PUA "Orizzo	onte Verde"			
Ambito	SOTTOBAC	INO C			Î
Contributi	VIABILITA'	+ ISOLA (1+2	2}		
S.T (mq)	52 220			tale sottobacir	
S (mq)	25 065	(Quota supe	rficie sottob	acino soggetta	a a trasformazione)
S (ha)	2,51				
\$ (kmq)	0,025065				
Tr	Y(Tr)	H(x)	n(x)	а	
10	2,250	25	0,27	47,50	
20	2,970	25	0,27	54,70	
50	3,902	25	0,27	64,02	
			unii 1954 Dill	NAMETRIC	A (IESOLO)
PARAMETE	RI DELLA CUR				A (8E00E0)
Tr (anni)		10	20	50	
а		47,504	54,702	64,019	
n		0,27	0,27	0,27	

CALCOLO COEFFICIENTE DI DEFLUSSO

	Si	φ	Six 🕫
	5 200	0,90	4 680,00
	7 716	0,80	6 172,00
	12 150	0,80	9 720,00
Totali	25 065	0,82	20 572,00
5	0,82		
	Totali o	5 200 7 716 12 150 Totali 25 065	5 200 0,90 7 715 0,80 12 150 0,80 Totali 25 065 0,82

CALCOLO D	EL TEMPO I	OI CORRIVA	ZIONE (Pol	itecnico di	Milano)			
Formulazione							***************************************	-4 c/ W/61/1
Tempo di con								
Si	li	li*	φ i	si	а	n	tai	tai
(mq)	(m)	(m)				••	(s)	(mim)
25 065	394	394	0,82	0,001	54,70	0,27	577	9
si = pendenza me Si = superficie de CALCOLO DE	ll'lesimo				Vul	Li	tri	be:
Tratto		INCIE						tri
1					(m/s)	(m)	(s)	(min)
•					0,8	394 Totale	492 492	8 8
CALCOLO DE	L TEMPO DI	CORRIVAZ	JONE			Totale	492	O
ta	tr	tc	to					
(min)	(min)	(min)	(ore)					
9	8	17	0,28					

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - DATI DI PROGETTO

1								
Tr	φ	а	n	t	t	h	jo	S
20	0,82	54,70	0,27	(min) 17	(ore) 0,28	(mm) 38,79	(mm/ora) 138,54	(mq) 25 065

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - RISULTATI

			- INC LODO O
Τr	Q	u	V pioggia
(anni)	(l/s)	(I/s ha)	(mc)
20	790	315	796
MAKANGARA MAKANGA MAKA			

SOTTOBACINO C

STIMA PORTATA METEORICA SOTTOBACINO "D"

DATI GENERALI

Comune	Jesolo									
		onte Verde"								
Piano	SOTTOBAC									
Ambito		VIABILITA' + ISOLA (1+2)								
Contributi										
S.T (mq)	84 295 (Superficle territoriale totale sottobacino)									
\$ (mq)	45 730	(Quota supe	rficle sottob	acino sogget	ita a trasformazione)					
S (ha)	4,57									
S (kmq)	0,04573									
,										
Tr	Y(Tr)	H(x)	n(x)	a						
10	2,250	25	0,27	47,50						
20	2,970	25	0,27	54,70						
50	3,902	25	0,27	64,02						
PARAMET	RI DELLA CUF	RVA DI POSS	IBILITA PLI	JVIOMETRIC	CA (JESOLO)					
Tr (anni)		10	20	50						
a		47,504	54,702	64,019						
n		0,27	0,27	0,27						

CALCOLO COEFFICIENTE DI DEFLUSSO

		Div.
Si	Ü	Six 🕫
6 000	0,90	5 400,00
23 470	08,0	18 776,00
16 260	0,80	13 008,00
i 45 730	0,81	37 184,00
0,81		
	23 470 16 260 i 45 730	6 000 0,90 23 470 0,80 16 260 0,80 i 45 730 0,81

Firmato Da: BARBAZZA STEFANO Emesso Da: ARUBAPEC S.P.A. NG CA 3 Serial#: 1f8d16ae7bfb62d60ae05b755a97f1e5

l 	EL TEMPO			41. 17. m2 12. 12. 12. 12. 12. 12. 12.	A	*******	and a management	
Formulazione	e suggerita ne	el 1997 del F	Politecnico di	Milano (Ma	mbretti e Pa	oletti)		
Tempo di cor	rivazione = te	mpo di acce	sso alla rete	+ tempo di	rete	•		
Sí	li	l (*	arphil	al	a	n	tai	tai
(mg)	(m)	(m)					(s)	(min)
45 730	548	548	0,81	0.001	54,70	0,27	722	12
tai = tempo di ac si = pendenza me	esso dell'iesimo edia dell'iesimo s	sotlobacino	rele di progello	olici O				
tai = tempo di acc	esso dell'iesimo edia dell'iesimo s Il'iasimo	sotlobacino ollobacino	rele di progella	a	Vuí	Li	ŧri	kri
tai = tempo di acc si = pendenza me Si = superficie de	esso dell'iesimo edia dell'iesimo s Il'iasimo	sotlobacino ollobacino	rete di progetto	a	Vuí (m/s)		tri (s)	tri (min)
tai = tempo di acc si = pendenza me Si = superficie de CALCOLO DE	esso dell'iesimo edia dell'iesimo s Il'iasimo	sotlobacino ollobacino	rete di progetto	a		Li (m) 548	tri (s) 685	tri (min) 11
tai = tempo di acc si = pendenza me SI = superficie de CALCOLO DE Tratto 1	:esso dell'iesimo adia dell'iesimo s il'iesimo EL. TEMPO Di	sotiobacino otiobacino RETE		a	(m/s)	(m)	(s)	(min)
tal = tempo di acc si = pendenza me SI = superficie de CALCOLO DE Tratto 1	:esso dell'iesimo adia dell'iesimo s il'iesimo EL. TEMPO Di	sotiobacino otiobacino RETE			(m/s)	(m) 548	(s) 685	(min) 11
tai=tempodiaco si⇒pendenza me si=superficie de CALCOLO DE Tratto 1	:esso dell'iesimo adia dell'iesimo s il'iesimo EL. TEMPO Di	sotiobacino otiobacino RETE			(m/s)	(m) 548	(s) 685	(min) 11
tal = tempo di acc si = pendenza me Si = superficie de CALCOLO DE Tratto 1	esso dell'iesimo adia dell'iesimo s il'iesimo EL TEMPO DI	sotiobacino oliobacino RETE CORRIVAZ	IONE		(m/s)	(m) 548	(s) 685	(min) 11

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - DATI DI PROGETTO

					O - DAII D	FRUGEI	10	
Tr	φ	a	Л	t	t	h	jo	s
20	0,81	54,70	0,27	(mín) 23	(ore) 0,38	(mm) 42,19	(mm/ora) 110,86	(mq) 45 730

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - RISULTATI

Tr	€	Ш	V pioggia
(anr	ní) (l/s)	(l/s ha)	(mc)
20	1 140	249	1560
A. A. A. A. A. A. A. A. A. A. A. A. A. A	The principal way of the payors		

STIMA PORTATA METEORICA SOTTOBACINO "E"

DATI GENERALI

DATI GENE	,				
Comune	Jesolo				
Piano	PUA "Orizzo				
Ambilo	SOTTOBAC				
Contributi	VIABILITA'	+ PARCHEG	GI (6+7+13)	+ ISOLE (9+	10}
S.T (mg)	141 700			tale sottobaci	
S (mq)	65 89 5	(Quota supe	rficie sottob	acino soggett	a a trasformazione)
S (ha)	6,59				
S (kmq)	0,085895				
Tr	Y(Tr)	H(x)	n(x)	а	
10	2,250	25	0,27	47,50	
20	2,970	25	0,27	54,70	
50	3,902	25	0,27	64,02	
PARAMET	RI DELLA CUR	VA DI POSS	IBILITA PLI	JVIOMETRIC	A (JESOLO)
Tr (anni)	• • • • • • • • • • • • • • • • • • •	10	20	50	
а		47,504	54,702	64,019	
Π		0,27	0,27	0,27	

CALCOLO COEFFICIENTE DI DEFLUSSO

GALCOLO COEFFICIENTE DI DEFLUSSO Superfici		Si	P	Six 🕫
Destinazione (*)				
Viabilità		13 600	0,90	12 240,00
Parcheggio 6		6 000	0,90	5 400,00
Parchaggio 7		4 560	0,90	4 104,00
Parchaggio 13		4 300	0,90	3 870,00
Isola 9		17 735	0,80	14 188,00
Isola 10		19 700	0,80	15 760,00
IAMIE	Totali	65 895	0,84	55 562,00
Valore assunto per il coefficiente di deflusso me	edio	0,84		
(*) Valori indicativi da verificare (n sade di progetto definitivo/ese				and a second second second second second second second second second second second second second second second

Formulazione	a suggerita na	il 1997 dal P	alitecnico di	Milano (Mai	mbretti e Pa	oletti)		
Tempo di con						,,		
Si	II.	li*	φi	si	а	n	tai	tai
(mq)	(m)	(m)				"	(s)	(min)
65 895	669	669	0,84	0.001	54,70	0,27	815	13
lai = tempo di acc sì = pendenza me	:esso dell'lesimo :dia dell'iesimo si	sottobacino	rete di progetto	1				
tai = tempo di acc si = pendenza me Si = superiicie de	:esso dell'lesimo :dia dell'iesimo s ll'iesimo	sottobacino otiobacino	rele di progetto	1	Vui	Lí	tri	tri
ai = tempo di acc si = pendenza me si = superficie de	:esso dell'lesimo :dia dell'iesimo s ll'iesimo	sottobacino otiobacino	rele di progetto	1	Vui (m/s)		tri (s)	trl (min)
ai = tempo di acc si = pendenza me si = superficie de CALCOLO DE	:esso dell'lesimo :dia dell'iesimo s ll'iesimo	sottobacino otiobacino	rele di progetto	1	· <u>-</u> .	Lí (m) 669	tri (s) 836	(min)
tai = tempo di acc si = pendenza me Si = superficie de CALCOLO DE Tratto	:esso dell'lesimo :dia dell'iesimo s ll'iesimo	sottobacino otiobacino	rele di progetto	1	(m/s)	(m)	(s)	
ai = tempo di acc si = pendenza nx si = superficie de CALCOLO DE Tratto	esso dell'lesimo edia dell'lesimo si ll'lesimo EL TEMPO Di	sottobacino ottobacino RETE		1	(m/s)	(m) 669	(s) 836	(min) 13
al = tempo di acc il = pendenza ne il = superficie de CALCOLO DE Tratto	esso dell'lesimo edia dell'lesimo si ll'lesimo EL TEMPO Di	sottobacino ottobacino RETE			(m/s)	(m) 669	(s) 836	(min) 13
tai = lempo di acc si = pendenza me Si = superficie de CALCOLO DE Tratto 1	esso dell'lesimo edia dell'iesimo si ll'iesimo EL TEMPO DI	sottobacino ottobacino RETE CORRIVAZ	IONE		(m/s)	(m) 669	(s) 836	(min) 13

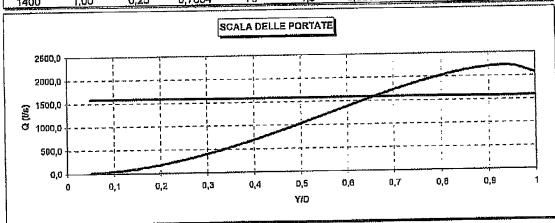
CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - DATI DI PROGETTO

					O - DATE	TRUGE	10	
Tr	Ý	а	n	t	t	h	jo	\$
20	0,84	54,70	0,27	(min) 26	(ore) 0,43	(mm) 43,56	(mm/ora) 10 1,29	(mq) 65 895

CALCOLO DELLA PORTATA CON IL METODO CINEMATICO - RISULTATI

Τr	Q	U	V pioggia
(anni)	(l/s)	(I/s ha)	(mc)
20	1 557	236	2410
AND DESCRIPTION OF THE PARTY OF			<u> </u>

SCALA DELLE PORTATE **TRATTO 200-F1**


Ks

DATI GENERALI Tronco 200-F1 Nodo 200

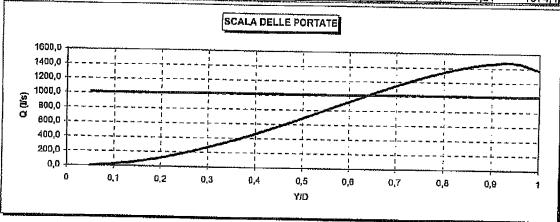
Diametro interno Pendenza i

1400 (mm) (1/1000) (m^{1/3}s⁻¹) 1,5 70

CALCOLO			A/D2	Ks		Rh	A		Q
D	Y/D	Rh/D	AIDZ	(m ^{1/3} s ⁻¹)	(1/1000)	(m)	(m²)	(m/s)	(I/s)
(mm)		0.0000	0.0447	70	1,5	0,0456	0,0288	0.35	10,0
1400	0,05	0,0326	0,0147			0,0889	0,0802	0,54	43,3
1400	0,10	0,0635	0,0409	70	1,5	0,0000	0,1448	0,70	100,8
1400	0,15	0,0929	0,0739	7 0	1,5	•	0,1440	0,83	181,5
1400	0,20	0,1206	0,1118	70	1,5	0,1688	•	0,94	283,8
1400	0,25	0,1466	0,1535	70	1,5	0,2052	0,3009		405,9
1400	0,30	0,1709	0,1982	70	1,5	0,2393	0,3885	1,04	545,1
1400	0,35	0,1935	0,245	70	1,5	0,2709	0,4802	1,14	
1400	0,40	0,2142	0,2934	70	1,5	0,2999	0,5751	1,21	698,5
1400	0,45	0,2331	0,3428	70	1,5	0,3263	0,6719	1,29	863,4
1400	0.50	0.25	0,3927	70	1,5	0,3500	0,7697	1,35	1036,3
1400	0,55	0,2649	0,4426	70	1,5	0,3709	0,8675	1,40	1214,0
1400	0,60	0,2776	0,492	70	1,5	0,3886	0,9643	1,44	1392,3
1400	0,65	0,2881	0,5404	70	1,5	0,4033	1,0592	1,48	1567,6
1400	0,70	0.2962	0.5872	70	1,5	0,4147	1,1509	1,51	1735,1
1400	0,75	0,3017	0.6319	70	1,5	0,4224	1,2385	1,53	1890,2
1	0,80	0,3042	0,6736	70	1,5	0,4259	1,3203	1,53	2026,1
1400	0,85	0.3033	0,7115	70	1,5	0,4246	1,3945	1,53	2135,9
1400	0,90	0,298	0,7445	70	1,5	0.4172	1,4592	1,51	2208,8
1400	•	0,2861	0,7707	70	1,5	0.4005	1,5106	1,47	2225,3
1400	0,95		0,7854	70	1,5	0,3500	1,5394	1,35	2072,7
1400	1,00	0,25	V,1004		1) %				

SCALA DELLE PORTATE TRATTO 100-102

DATI GENERALI

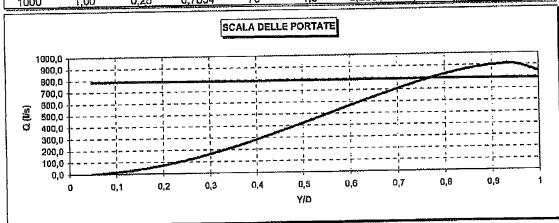

 $\langle \cdot \rangle$

Tronco 100-102 Nodo 100

| Diametro interno (mm) 1208 | Pendenza i (1/1000) 1,5 | Ks (m^{1/3}s⁻¹) 70

CALCOLO IDRAULICO

D	Y/D	Rh/D	A/D2	Ks	1	Rh	A	v	
(mm)				(m ^{1/3} s ⁻¹)	(1/1000)	(m)	(m²)		Q
1200	0,05	0,0326	0,0147	70	1,5	0,0391		(m/s)	(I/s)
1200	0,10	0,0635	0,0409	70	1,5	0,0351	0,0212	0,31	6,6
1200	0,15	0,0929	0,0739	70	1,5		0,0589	0,49	28,7
1200	0,20	0,1206	0,1118	70		0,1115	0,1064	0,63	66,8
1200	0,25	0,1466	0,1535	70	1,5	0,1447	0,1610	0,75	120,3
1200	0,30	0,1709	0,1982	70 70	1,5	0,1759	0,2210	0,85	188,1
1200	0,35	0,1935	0,1862		1,5	0,2051	0,2854	0,94	269,1
1200	0,40	0,1333	0,2934	70 70	1.5	0,2322	0,3528	1,02	361,3
1200	0,45	0,2331		70 70	1,5	0,2570	0,4225	1,10	463,1
1200	0.50	0,25	0,3428	70	1,5	0,2797	0,4936	1,16	572,4
1200	0,55	0,2649	0,3927	70	1,5	0,3000	0,5655	1,21	687,0
1200	0,50		0,4426	70	1,5	0,3179	0,6373	1,26	804,8
1200	•	0,2776	0,492	70	1,5	0,3331	0,7085	1,30	923,0
1200	0,65	0,2881	0,5404	70	1,5	0,3457	0,7782	1,34	1039,2
1200	0,70	0,2962	0,5872	70	1,5	0,3554	0,8456	1,36	1150,3
1 '	0,75	0,3017	0,6319	70	1,5	0,3620	0,9099	1,38	1253.1
1200	0,80	0,3042	0,6736	70	1,5	0,3650	Ö,9700	1,38	1343,2
1200	0,85	0,3033	0,7115	70	1,5	0,3640	1,0246	1,38	1418,0
1200	0,90	0,298	0,7445	70	1,5	0,3576	1,0721	1,37	1464,3
1200	0,95	0,2861	0,7707	70	1,5	0,3433	1,1098	1,33	1475,2
1200	1,00	0,25	0,7854	70	1,5	0,3000	1,1310	1,21	1374,1

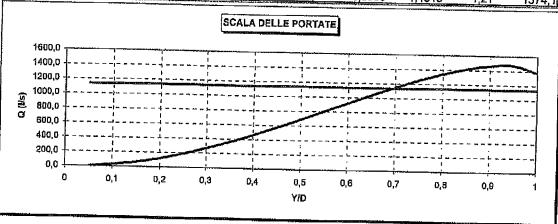

SCALA DELLE PORTATE TRATTO 400-420

DATI GENERALI

Tronco 400-420			
Nodo 400			
Diametro interno	(mm)	1000	
Pendenza i	(1/1000)	1,5	
Кs	(m ^{1/3} s ⁻¹)	70	

CALCOLO IDRAULICO

		IDRAULIC		6/20	Ks	<u>¥</u>	Rh	Α	V	Q
		Y/D	Rh/D	A/D2	ณร (m ^{1/3} s ⁻¹)	(1/1000)	(m)	(m²)	(m/s)	(i/s)
(m			0.0000	0.0447	70	1,5	0,0326	0.0147	0,28	4,1
1 '	00	0,05	0,0326	0,0147		1,5	0.0635	0,0409	0,43	17,8
	00	0,10	0,0635	0,0409	70 70		0.0929	0,0739	0,56	41,1
10	00	0,15	0,0929	0,0739	70	1,5	•	0,0733	0,66	74,0
10	00	0,20	0,1206	0,1118	70	1,5	0,1206	0.1535	0,75	115,7
10	00	0,25	0,1466	0,1535	70	1,5	0,1466	•	0,83	165,5
10	00	0,30	0,1709	0,1982	70	1,5	0,1709	0,1982		222,2
10	100	0,35	0,1935	0,245	70	1,5	0,1935	0,2450	0,91	
10	00	0,40	0,2142	0,2934	70	1,5	0,2142	0,2934	0,97	284,8
	100	0,45	0,2331	0,3428	70	1,5	0,2331	0,3428	1,03	352,0
	000	0,50	0,25	0,3927	70	1,5	0,2500	0,3927	1,08	422,5
	000	0,55	0,2649	0,4426	70	1,5	0,2649	0,4426	1,12	494,9
	100	0,80	0,2776	0,492	70	1,5	0,2776	0,4920	1,15	567,6
	000	0,65	0,2881	0.5404	70	1,5	0,2881	0,5404	1,18	639,1
	000	0,70	0,2962	0,5872	70	1,5	0,2962	0,5872	1,20	707,4
	300	0,75	0,3017	0,6319	70	1,5	0,3017	0,6319	1,22	770,6
	300	0,80	0.3042	0,6736	70	1,5	0,3042	0,6736	1,23	826,0
1		0,85	0,3033	0,7115	70	1,5	0,3033	0,7115	1,22	870,8
	000	0,83	0,298	0.7445	70	1,5	0,2980	0,7445	1,21	900,5
	000		0,2861	0,7707	70	1,5	0.2861	0,7707	1,18	907,2
	300	0,95	•	0,7757	70	1,5	0,2500	0,7854	1,08	845,0
1 10	200	1,00	0,25	0,7004	1 4	1,00		And the second second	CIVIL PROPERTY.	

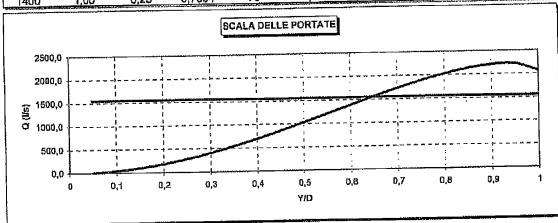

SCALA DELLE PORTATE TRATTO 500-520

DATI GENERALI Tronco 500-520 Nodo

Diametro Interno 1200 (mm) Pendenza i (1/1000) 1,5 Ks (m¹⁽³s⁻¹) 70

CALCOLO IDRAULICO

D	Y/D	Řh/D	A/D2	Ks		÷.			
(mm)				(m ^{1/3} s ⁻¹)	(4 (4 0 0 0)	Rh	Α	A	Q
1200	0,05	0,0326	0,0147		(1/1000)	(m)	(m²)	(m/s)	(Va)
1200	0,10	0,0635	0,0409	70 70	1,5	0,0391	0,0212	0,31	6,6
1200	0,15	0,0929		70	1,5	0,0762	0,0589	0,49	28,7
1200	0,20	0,0329	0,0739	70	1,5	0,1115	0,1064	0,63	66,8
1200	0,25	•	0,1118	70	1,5	0,1447	0,1610	0,75	120,3
1200	•	0,1466	0,1535	70	1,5	0,1759	0,2210	0,85	188,1
1200	0,30	0,1709	0,1982	70	1,5	0,2051	0,2854	0,94	269,1
1	0,35	0,1935	0,245	70	1,5	0,2322	0,3528	1,02	361,3
1200	0,40	0,2142	0,2934	70	1,5	0,2570	0,4225	1,10	463,1
1200	0,45	0,2331	0,3428	70	1,5	0,2797	0,4936	1,16	572,4
1200	0,50	0,25	0,3927	70	1,5	0,3000	0,5655	1,21	687,0
1200	0,55	0,2649	0,4426	70	1,5	0.3179	0,6373	1,26	804,8
1200	0,60	0,2776	0,492	70	1,5	0.3331	0.7085	1,30	
1200	0,65	0,2881	0,5404	70	1,5	0,3457	0,7003		923,0
1200	0,70	0,2962	0,5872	70	1,5	0,3554	0,7782	1,34	1039,2
1200	0,75	0,3017	0.6319	70	1,5	0,3620		1,36	1150,3
1200	0,80	0,3042	0.6736	70	1,5	0,3650	0,9099	1,38	1253,1
1200	0,85	0.3033	0,7115	70		•	0,9700	1,38	1343,2
1200	0,90	0,298	0,7445	70	1,5	0,3640	1,0246	1,38	1416,0
1200	0,95	0,2861	0.7707	70 70	1,5	0,3576	1,0721	1,37	1464,3
1200	1,00	0,25	0,7707		1,5	0,3433	1,1098	1,33	1475,2
ASSESSMENT AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED I			U, / UD4	70	1,5	0,3000	1,1310	1,21	1374,1


SCALA DELLE PORTATE TRATTO 300-370

DATI GENERALI

DW 11 GEIREITOEI		
Tronco 300-370		
Nodo 300		
Diametro Interno	(mm)	1400
Pendenza i	(1/1000)	1,5
Ks	(m ^{1/3} s ⁻¹)	70

CALCOLO IDRAULICO

CALCULU			- t the fe	- 77.		Rh	A	V	Q
D	Y/D	Rh/D	A/D2	Ks	i tennot		(m²)	(m/s)	(l/s)
(mm)				(m ^{1/3} s ⁻¹)	(1/1000)	(m)	0,0288	0,35	10,0
1400	0,05	0,0326	0,0147	70	1,5	0,0456	0,0200	0,54	43,3
1400	0,10	0,0635	0,0409	70	1,5	0,0889		0,70	100,8
1400	0,15	0,0929	0,0739	70	1,5	0,1301	0,1448	0,70	181,5
1400	0,20	0,1206	0,1118	70	1,5	0,1688	0,2191	•	283,B
1400	0,25	0,1466	0,1535	70	1,5	0.2052	0,3009	0,94	
1400	0.30	0,1709	0,1982	70	1,5	0,2393	0,3885	1,04	405,9
1400	0,35	0.1935	0,245	70	1,5	0,2709	0,4802	1,14	545,1
1400	0,40	0,2142	0.2934	70	1,5	0,2999	0,5751	1,21	698,5
1400	0,45	0,2331	0,3428	70	1,5	0,3263	0,6719	1,29	863,4
1400	0.50	0,25	0,3927	70	1,5	0,3500	0,7697	1,35	1036,3
1400	0,55	0.2649	0.4426	70	1,5	0,3709	0,8675	1,40	1214,0
1400	0,60	0,2776	0.492	70	1,5	0,3886	0,9643	1,44	1392,3
1400	0,65	0.2881	0,5404	70	1,5	0,4033	1,0592	1,48	1567,6
1400	0,70	0,2962	0,5872	70	1,5	0,4147	1,1509	1,51	1735,1
1 .	0,75	0,3017	0,6319	70	1,5	0,4224	1,2385	1,53	1890,2
1400	0,70	0,3042	0,6736	70	1,5	0.4259	1,3203	1,53	2026,1
1400	•	0,3033	0,7115	70	1,5	0.4246	1,3945	1,53	2135,9
1400	28,0		0,7445	70	1,5	0,4172	1,4592	1,51	2208,8
1400	0,90	0,298	0,7443	70	1,5	0.4005	1,5106	1,47	2225,3
1400	0,95	0,2861	0,7854	70	1,5	0,3500	1,5394	1,35	2072,7
1400	1,00	0,25	U ₁ 7004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-			

DIMENSIONAMENTO VASCHE DI PRIMA PIOGGIA

DIMENSIONAMENTO VASCHE DI PRIMA PIOGGIA

Nome	Ambito	Superficie	Superficie	Volume	Volume	Volume
vasca	sotteso	trattata	trattata	unitario	richiesto	
		(mg)	(ha)	(mc/ha)	(mc)	(mc)
VPP1	P1	2 220	0,22	50	11,10	76
VPP2	P2	1 980	0,20	50	9,90	10
VPP3	P3	1 960	0,20	50	9,80	10
VPP4	P4	1 240	0,12	50	6,20	10
VPP5	P5	2 420	0,24	50	12,10	15
VPP6	P6	6 000	0,60	50	30,00	30
VPP7	P7	4 560	0,46	50	22,80	25
VPP8	P8	2 000	0,20	50	10,00	10
VPP9	P9	2 000	0,20	50	10,00	10
VPP10	P10	5 360	0,54	50	26,80	30
VPP11	P11	4 500	0,45	50	22,50	25
VPP12	P11	3 790	0,38	50	18,95	20
VPP13	P11	4 300	0,43	50	21,50	25

CALCOLO DEL CARICO IDRAULICO PORTATA NERA

DATI GENERALI NUOVO INSEDIAMENTO

DATI GENERALI NOOVO INGEDIAMENTO										
Comune	JESOLO									
Progetto	P.U.A. ORIZZ	CONTE V	<u>ERDE</u>							
Numero abitan	ıti insediabili p	er isola								
N(1)	250		Isola 1							
N(2)	272		isola 2							
N(3)	479		Isola 3							
N(4)	363		Isola 4							
N(5)	94		Isola 5							
N(6)	233		Isola 6							
N(7)	841		Isola 7							
N(8)	407		sola 8							
N(9)	138		Isola 9							
N(10)	439		Isola 10							
N(11)	501		Isola 11							
da essegnare	8									
TOTALE	4025									
Nota (*)	Valori silmati									
D	300	(Vs ab)	Dotazione idrica procapite							
п	24		numero ore di funzionamento							
Cafflusso	0,8		Coefficiente di afflusso							
Сро	1,5		Coefficiente di punta prario							
Срд	1,5		Coefficiente di punta glomallero							
Ср	2,25		Coefficiente di punta (Cp = Cpo x Cpg)							

CALCOLO GARICO IDRAULICO PORTATA NERA

Blocco	MRICO IDRE	D	П	Cafflusso	Qmedia	Ср	Ор
D1000		(I/s ab)	(ore)		(l/s)		(l/s)
N(1)	250	300	24	0,8	0,69	2,25	1,56
N(2)	272	300	24	8,0	0,76	2,25	1,70
N(3)	479	300	24	8,0	1,33	2,25	2,99
N(4)	363	300	24	8,0	1,01	2,26	2,27
N(5)	363	300	24	0,8	1,01	2,25	2,27
N(B)	407	300	24	8,0	1,13	2,25	2,54
	·		Totale tro	nco N5-M29	5,93		13,34
N(6)	233	300	24	8,0	0,65	2,25	1,46
N(7)	841	300	24	0,8	2,34	2,25	5,26
N(9)	138	300	24	8,0	0,38	2,25	0,86
N(10)	439	300	24	8,0	1,22	2,25	2,74
N(11)	501	300	24	8,0	1,39	2,25	3,13
da ass.	8	300	24	8,0	0,02	2,25	0,05
			Totale tr	onco N5-N62	6,00		13,50
	Portata tr	atto termin	ale N-N5		11,93		26,84

PORTATA NERA

CALCOLO PORTATA NERA DA RILANCIO ESISTENTE IMMESSA IN RETE

٦.	: K1/10 - pero grando										
1	N(R.E.)	1000		Numero ab	Numero abitanti insediati da rilancio esistente						
	5.1			(Valore ind	(Valore indicativo da aggiornare in sede di progetto definitivo)						
1	N	D	п	Cafflusso	Qmedia	Ср	Qp				
ĺ		(l/s ab)	(ore)		(l/s)		(I/\$)				
L	1000	300	24	8,0	2,8	2,25	6,3				
· n	Account to the second second second		NAME OF TAXABLE PARTY.				•				

CALCOLO PORTATA	NERA - QUA	DRO RIASSU	INTIVO	
Portata media	(l/s)	P.U.A. 11 ₁ 93	RILANCIO ESISTENTE 2,78	14,71
Portata di punta	(l/s)	26,84	6,25	33,09

VERIFICA AZIONE AUTOPULENTE TRONCO N-N5

DATI GENERALI

Diametro interno	(mm)	400	gres	•
Pendenza i	(1/1000)	2,5		
Ks	(m _{rt)} e.,)	90		······

CALCOLO DELLA VELOCITA' CRITIGA E DELLA PENDENZA CRITICA PER DIVERSE DISTRIBUZIONI DI DIAMETRI

PER DIVER	KRE DIR IN	IBUZIUNI L	II DIAMETT				Ks	Verities	l critica
0	Y/D	Rh/D	A/D2	Rh	γ	70			
_	•10			(m)	Kgims	kg/mq	(m ^{1/3} s ⁻¹)	(m/s)	(1/1000)
(mm)					1000	0.10	90	0.48	4,15
200	0,20	0,1206	0,1118	0,0241				0.54	: . 2 П7.∵.
St. 400 · ·	0.20	0.1205	0,1118	0,0482	1000	0,10		7 U.J4.>>:	270
		0.1206	0.1118	0.0362	1000	0,10	80	0,52	2,76
300	0,20		• •		1000	0.10	90	0.54	2,07
400	0,20	0,1206	0,1118	0,0482	1000	2,10			

CALGOLO DELLA VELOCITA' CRITICA E DELLA PENDENZA CRITICA

PER	DIVERSI	GRADI	DI RIEMF	NMENTO	ı

HEK DIVEL	ISI GNADI	OI KIEMICIO	I HITTO				Ks	V critica	critica
O	Y/D	Rh/D	A/D2	Rh	γ	ΤĊ		(m/s)	(1/1900)
(mm)				(m)	Kg/m¢	kg/mq	(w ₁₁₃ ≥,()		7,67
400	0.05	0.0326	0,0147	0,0130	1000	0,10	90	0,44	
400	0,10	0.0835	D,0409	0,0254	1000	0,10	90	0,49	3,94
400	0.15	0,0929	0.0739	0,0372	1000	0,10	80	0,52	2,69
400	0,20	0,1208	0.1118	0,0482	1000	0,10	90	0,54	2.07
400	0,25	0,1466	0.1535	0.0586	1000	0,10	90	0,56	1,71
	0,30	0,1709	0,1982	0,0684	1000	0,10	90	0,58	1,46
400	-	0.1935	0,245	0.0774	1000	0,10	80	0,59	1,29
400	0,35	0,1332	0,2934	0,0857	1000	0.10	90	08,0	1,17
400	0,40	0,2331	0,3428	0,0932	1000	0,10	90	0,61	1,07
400	0.45	0,25	0,3927	0,1000	1000	0,10	90	0,61	1,00
400	0,50	•	0,4426	0,1060	1000	0,10	80	0,62	0,94
400	0,55	0,2649	0,492	0,1110	1000	0,10	90	0,62	0,90
400	0,60	0,2776	D,5404	0,1162	1000	0,10	90	0,63	0,87
400	0,65	0,2881		•	1000	0,10	90	0,63	0,84
400	0,70	0,2962	0,5872	0,1185	1000	0,10	90	0,63	0,83
400	0,75	0,3017	0,5319	0,1207	1000	0,10	90	63,0	0,82
400	0,80	0,3042	0,6736	0,1217		0,10	90	0,63	0,82
400	0,85	0,3033	0,7115	0,1213	1000		80	0,63	0,84
400	0,90	0,298	0,7445	0,1192	1000	0,10	90 90	D,83	0,87
400	0,98	0,2861	0,7707	0,1144	1000	0,10		0,81	1,00
400	1,00	0,25	0,7854	0,1000	1000	0,10	90	ປຸດເ	1,10

PURTATA NEKA 311	IMPA IW			 	
Portala media	Qm	11,9	(Vs)		
Portata di punta	Qр	26,8	(l/s)		

CAL	COL	n.	IDR	AUI	LICO

CMEDDEM		-		10-		Rh	_ A	V	વા
	YID	Rh/D	AID2	Ks (m ^{(/3} ₅′¹)	1 (1/1000)	(m)	(m ²)	(mV5)	(Vs)
(m#i)			45		2,5	0,0130	0.0024	0,26	0,6
400	0,05	0,0328	0,0147	90		0,0155	0,0085	0,39	2,5
400	0,10	0,0635	0,0409	90	2,5	0.0372	0,0118	0,50	5,9
400	0,15	0,0929	0,0739	90	2,5	0,0482	0,0179	0,60	10,7
400	0,2	0,1206	0,1118	90	2,5	0,0462	0,0246	0'es	18,7
400	0,25	0,1466	0,1535	90	2.5	•	0,0240	0,75	23,9
400	0,30	0,1709	0,1982	₽0	2,5	0,0684	0.0392	0,82	32,0
400	0,35	0,1935	0,245	90	2,5	0,0774	0.0469	0,87	41,1
400	0,40	0,2142	0,2934	90	2,5	0,0657		0,93	50.B
400	0,45	0,2331	0,3428	90	2.5	0,0932	0,0548	0,93	60,9
400	0,50	0,25	0,3927	80	2,5	0,1000	0,0628	1,01	71,4
400	0.55	0,2849	0,4426	90	2,5	0,1060	0,0708	1,04	81,8
400	0,60	0,2776	0,492	80	2,5	0,1110	0,0767		92,1
400	0,65	0,2881	0,5404	90	2,5	0,1152	0,0865	1,07	102,0
400	0,70	0,2962	0,5872	90	2,5	0,1185	0,0940	1,09	111,1
400	0,76	0,3017	0,6319	90	2,5	0,1207	0,1011	1,10	119,1
400	0,80	0.3042	0,6736	90	2,5	0,1217	0,1078	1,10	-
400	0,85	0.3033	0,7115	90	2,5	0,1213	Q,113B	1,10	125,5
400	0,90	0,298	0,7445	90	2,5	0,1192	0,1191	1,09	129,8
400	0,95	0,2861	0,7707	90	2,5	0,1144	0,1233	1,06	130,8
400	1,00	0,25	0,7864	90	2,5	0,1000	0,1257	72,0	121,8
400	1,00	5,20				PARTIE NAME OF THE PARTY OF THE	·****		THE PARTY OF

AUTOPULIZIA TRONCO N-N5

VERIFICA AZIONE AUTOPULENTE TRONCO N5-M29

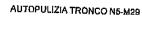
DATI GENERALI

Diametro interno	(mm)	260	gres	
Pendenza i	(1/1000)	3,0		i
Ks	(m ^{1/2} s ⁻¹)	90		

CALCOLO DELLA VELOCITA' CRITICA E DELLA PENDENZA CRITICA PER DIVERSE DISTRIBUZIONI DI DIAMETRI

		HOULIGHT	OI DIVINET	na					
D	Y/D	Rh/D	A/D2	Ŕħ	7	TC	Къ	11-11	
(mm)								V critica	i critica
200	0.20	0.1206		(m)	Kg/me	kg/mq	(m ^{1/3} s-1)	(m/s)	(1/1000)
			0,1118	0,0241	1000	0,10	90	0,48	
250	0,20	0,1206	0.1118	0.0302	1000	0,10			4,15
300	0,20	0.1206	0.1118	0.0362			90	0,50	3,32
400	0.20	-			1000	0,10	90	0,52	2,76
700	0,20	0,1206	0,1118	0,0482	1000	0.10	90	0.54	-
		1 A 16-16-A 16-16-16-16-16-16-16-16-16-16-16-16-16-1		Wir - warry (if per per per per	-			υ,υ-ι	2,07

CALCOLO DELLA VELOCITA' CRITICA E DELLA PENDENZA CRITICA PER DIVERSI GRADI DI DIESENDACITA


D	Y/D	Rh/D	A/D2	Rh	7	ΤC	Кв	V critica	i critica
(mm)				(m)	Kg/mc	kg/mq	(m ^(r) a ⁻¹)	(m/s)	
250	0,05	0,0326	0,0147	0,0082	1000	0,10	90	0,4D	(1/1000)
250	0,10	0,0835	0,0409	0,0159	1000	0,10	90	0,45	12,27
250	0,15	0,0929	0,0739	0,0232	1000	0,10	90	• •	6,30
250	0,20	0,1206	0,1118	0,0302	1000	0,10	90	0,48	4,31
250	0,25	0,1466	0,1535	0,0367	1000	0,10	90	0,50	3,32
250	0,30	0,1709	0,1982	0.0427	1000	0,10		0,52	2,73
25D	0,35	0,1935	0,245	0.0484	1000	0.10	90	0,53	2,34
250	0,40	0,2142	0,2934	0,0538	1000	0,10	90	0,54	2,07
250	0,45	0,2331	0,3428	0,0583	1000		90	0,55	1,87
260	0,50	0,25	0.3927	0,0625	1000	0,10	80	0,56	1,72
250	0,55	0,2549	0.4426	0,0662	1000	0,10	90	0,57	1,60
250	0,80	0,2776	0,492	0,0694	1000	0,10	90	0,57	1,51
250	0,65	0.2881	0.5404	0,0720	1000	0,10	90	0,58	1,44
280	0,70	0,2962	0,5872	0,0741	1000	0,10	90	0,58	1,39
250	0.75	0,3017	0,6319	0,0754		0,10	80	0,58	1,35
250	0,80	0,3042	0,8738	0,0754	1000	0,10	90	0,59	1,33
250	0,85	0,3033	0,7115	0,0758	1000	0,10	80	0,89	1,31
250	0.90	0,298	0,7445	•	1000	0,10	90	0,59	1,32
250	0,95	0,2861	0,7707	0,0745	1000	0,10	90	0,58	1,34
250	1.00	0,25	0,7854	0,0715	1000	0,10	90	0,56	1,40
	.,	~~enemanares Dic⊓	U,/ B54	0,0625	1000	0,10	90	0,57	1,60

PORTATA NERA STIMATA

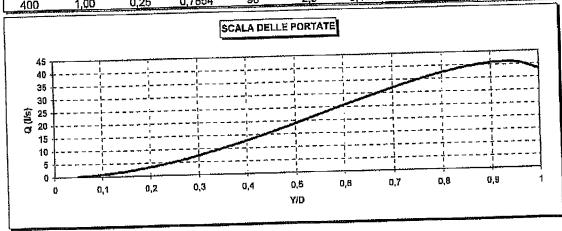
	2 22 12 1 3 -1			
Portata media	Qm	5,93	(l/s)	
Portata di punta	Qp	13.34		<u> </u>
<u>. </u>		10,34	(Vs)	
VANTON VINCONSTRUCTOR VINCONSTRUCTOR				

CALCOLO IDRAULICO

D	Y/D	RND	A/02	Кв		Rh			
(mm)				(m ^{1,0} e ⁻¹)	/1110005		A	V	Q
250	0,06	0,0326	0,0147	90	(1/1000)	(m)	(m²)	(mis)	(Va)
25D	0,10	0,0635	0,0409	90	3	0,0082	6000,A	0,20	0,2
25D	0,15	0,0929	0,0739		3	0,0159	0,0026	0,31	0,8
250	0,2	0,1206	0,1118	90	3	0,0232	0,0046	0.40	1,9
250	0,25	0,1486		80	3	0,0302	0,0070	0,48	3,3
260	0,3D	0,1708	0,1535	90	3	0,0367	0,0096	0.54	5,2
250	0,35		0,1982	90	3	0,0427	0,0124	0,60	7,5
250	0,40	0,1935	0,245	90	3	0,0484	0,0153	0.65	10,0
250	0,40	0,2142	0,2934	90	3	0,0536	0,0183	0.70	12,8
250		0,2331	0,3428	90	3	0,0583	0,0214	0,74	15,9
250	0,50	0,25	0,3827	90	3	0,0625	0,0245	0,78	19,1
250 250	0,55	0,2649	0,4426	90	3	0.0662	0,0277	0,81	22,3
	0,60	0,2776	0,492	90	3	0,0694	0,0308	0,83	
250	0,65	0,2881	0,5404	90	3	0,0720	0,0338	0,85	25,6
250	0,70	0,2962	0,5872	90	3	0,0741	0,0367	0,83	28,8
250	0,75	0,3017	0,6319	90	3	0,0754	0.0395		31,9
250	0,80	0,3042	0,6736	90	3	0,0761	0,0393	88,0	34.8
250	0,85	0,3033	0,7115	90	3	0,0758		88,0	37,3
250	0,90	0.298	0,7445	90	3	0,0745	0,0445	0,88	39,3
250	0,95	0,2861	0,7707	90	3	•	0,0465	0,87	40,6
250	1,00	0.26	0,7854	90	3	0,0715	0,0482	0,85	40,9
ATTEMPORAL PROPERTY.		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-10 q			0,0625	0,0491	0.78	38,1

()

SCALA DELLE PORTATE


Ks

DATI GENERALI
Tronco DORSALE PRINCIPALE Tronco

Nodo TERMINALE

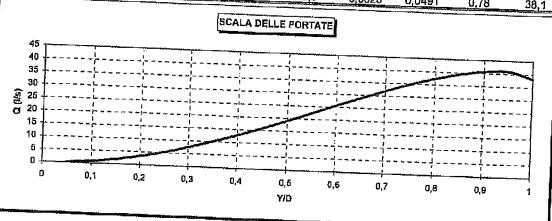
400 Diametro interno (mmt) (1/1000) (៧^{1/3}s⁻¹) 2,5 Pendenza i 90

CALCOLO		0				Rh	A	٧	Q
D	Y/D	Rh/D	A/D2	Ks.	(4/4000)	(m)	(m²)	(m/s)	(1/5)
(mm)			- · · ·	(m ^{1/3} s ⁻¹)	(1/1000)	0.0130	0.0024	0,25	0,8
400	0,05	0,0326	0,0147	90	2,5	0,0254	0,0065	0,39	2,5
400	0,10	0,0635	0,0409	90	2,5	0,0254	0,0003	0,50	5,9
400	0,15	0,0929	0,0739	90	2,5	0,0372	0,0179	0,60	10,7
400	0,20	0,1208	0,1118	90	2,5		0,0175	0,68 0,68	16,7
400	0,25	0,1466	0,1535	90	2,5	0,0586	0,0240	0,75	23,9
400	0,30	0,1709	0,1982	90	2,5	0,0684	0,0317	0,82	32,0
400	0,35	0,1935	0,245	90	2,5	0,0774	0.0469	0,87	41,1
400	0,40	0,2142	0,2934	90	2,5	0,0857	0,0469	0,93	50,8
400	0,45	0,2331	0,3428	90	2,5	0,0932	0,0548	0,97	60,9
400	0,50	0,25	0,3927	90	2,5	0,1000	0,0020	1,01	71,4
400	0,55	0,2649	0,4426	90	2,5	0,1060	0.0787	1,04	81,8
400	0,60	0,2776	0,492	90	2,5	0,1110	0,0865	1,07	92,1
400	0,65	0,2881	0,5404	90	2,5	0,1152	0,0863	1,09	102,0
400	0,70	0,2962	0.5872	90	2,5	0,1185	0,0940 0,1011	1,10	111,1
400	0,75	0,3017	0,6319	90	2,5	0,1207	0,1078	1,10	119,1
400	0,80	0,3042	0,6736	90	2,5	0,1217	0,1076	1,10	125,5
400	0,85	0,3033	0,7115	90	2,5	0,1213	0,1136 0,1191	1,10	129,8
400	0,90	0,298	0,7445	90	2,5	0,1192	•	1,08	130,8
400	0,95	0,2861	0,7707	90	2,5	0,1144	0,1233	0,97	121,8
400	1,00	0,25	0,7854	90	2,5	0,1000	0,1257	<u> </u>	, parent and a

SCALA DELLE PORTATE

 $\langle \hat{\ } \rangle$

 $\langle \hat{} \rangle$


()

()

DATI GENERALI
Tronco RETE MINORE Nodo TERMINALE Diametro interno (mm) 250 Pendenza i (1/1000) 3,0 Ks (m^{1/3}s-1) 90

CALCOLO IDRAULICO

	Ď.	Y/D	Rh/D	A/D2	ic.					
	(mm)		=	7102	Ks	i	Rh -	Α	V	Q
	250	0.05	0,0326	0,0147	(m³ ^{1/3} s ⁻¹)	(1/1000)	(m)	(m²)	(m/s)	(l/s)
	250	0,10	0,0635		90	3,0	0,0082	0.0009	0,20	
Į	250	0,15		0,0409	90	3,0	0,0159	0,0026	0,31	0,2
	250	0,20	0,0929	0,0739	90	3,0	0,0232	0,0046	•	0,8
- 1	250	0,25	0,1206	0,1118	90	3,0	0,0302	0,0070	0,40	1,9
-1	250	•	0,1466	0,1535	90	3,0	0,0367	8600,0	0,48	3,3
ļ	250	0,30	0,1709	0,1982	90	3,0	0,0427		0,54	5,2
-		0,35	0,1935	0,245	90	3,0	0,0484	0,0124	0,60	7,5
1	250	0,40	0,2142	0,2934	90	3,0		0,0153	0,65	10,0
ĺ	250	0,45	0,2331	0.3428	80	3,0 3,0	0,0536	0,0183	0,70	12,8
1	250	0,50	0,25	0.3927	90		0,0583	0,0214	0,74	15,9
	250	0,55	0,2649	0,4426	90	3,0	0,0825	0,0245	0,78	19,1
Ĺ	250	0,60	0,2776	0,492	9D	3,0	0,0682	0,0277	0,81	22,3
1	250	0,65	0,2881	0,5404		3,0	0,0694	0,0308	0,83	25,6
1	250	0,70	0,2962	0,5872	90	3,0	0,0720	0,0338	0,85	28,8
1	250	0,75	0.3017		90	3,0	0,0741	0.0367	0,87	31,9
ĺ	250	0,80	0,3042	0,6319	90	3,0	0,0754	0,0395	0,88	
l	250	0,85		0,6736	90	3,0	0,0761	0.0421	0,88	34,8
Į	250	0,90	0,3033	0,7115	90	3,0	0,0758	0.0445		37,3
	250	0,95	0,298	0,7445	90	3,0	0.0745	0,0465	0,88	39,3
	250	-	0,2861	0,7707	90	3,0	0,0715	0,0482	0,87	40,6
느		1,00	0,25	0,7854	90	3,0	0,0625		0,85	40,9
1						the state of the s	0,0020	0,0491	0.78	วฅ 4 8

DIMENSIONAMENTO POZZO I.S.1

CARATTERISTICHE SISTEMA ELETTROPOMPE DI PROGETTO

CARATTERISTICHE SISTEMA ELI				 1
Portata media stimata in arrivo	Qm	8,1	(I/s)	
Portata di punta stimata in arrivo	Qp	19,8	(1/s)	
Numero pompe	Np	2		
Numero pompe in funzione	Npf	1		ļ
Numero pompe ridondanti	Npr	1		
Portata media singola pompa	Qpompa	20,0	(I/s)	
Numero di avvii /ora	NA	8		
Tempo di ciclo	Tc	450	(s)	

CALCOLO VOLUME UTILE E DIMENSIONI POZZO

V1=Qp x Tc /4	(formula per	ril calcolo d	el volume	e V1)	
Volume V1 Volume utile totale	V1 ∑vi	2,3 3,1	(mc)		
Lato di base pozzo	B1	2,0	(m)		
Lato di base pozzo	B2	2,5	(m)		
Area pozzo	Αp	5,0	(m g)		
Altezza utile minima del pozzo	Hu	0,6	(m)		
Franco per allarmi	Hf	0,2	(m)		
Altezza utile di progetto	Ht	8,0	(m)		
Altezza volume morto	Hvm	0,3	(m)		
Altezza di riserva	Hr	0,1	(m)		
Altezza assegnata al pozzo	Htot	1,2	(m)		اجنشر، بوت

DIMENSIONAMENTO POZZI 1.S.2 - 1.S.3

CARATTERISTICHE SISTEMA ELETTROPOMPE DI PROGETTO

		E DI PRO	OLI IO
Portata media stimata in arrivo	Qm	3,9	(I/s)
Portata di punta stimata in arrivo	Qр	8,7	(Vs)
Numero pompe	Np	2	
Numero pompe in funzione	Npf	1	
Numero pompe ridondanti	Npr	1	
Portata media singola pompa	Qpompa	5,0	(l/s)
Numero di avvii /ora	NA	8	
Tempo di ciclo	T¢	450	(s)

CALCOLO VOLUME UTILE E DIMENSIONI POZZO

OREGOED VOLUME OTILE E DIMENSIONI POZZO					
V1=Qp x Tc /4	(formula per	il calcolo d	del volume V1)		
Volume V1 Volume utile totale	V1 Σvi	0,6 0,8	(mc) (mc)		
Lato di base pozzo	B1	2,0	(m)		
Lato di base pozzo	B2	2,0	(m)		
Area pozzo	Ap	4,0	(mg)		
Altezza utile minima del pozzo	Нu	0,2	(m)		
Franco per allarmi	Hf	0,2	(m)		
Altezza utile di progetto	Ht	0,4	(m)		
Altezza volume morto	Hvm	0,3	(m)		
Altezza di riserva	Hr	0,5	(m)		
Altezza assegnata al pozzo	Htot	1,2	(m)		

Provincia di Venezia

P.U.A.

AMBITO DI

PROGETTAZIONE UNITARIA N.34

ALLEGATI

RELAZIONE TECNICA LINEA DI DISTRIBUZIONE DEL GAS METANO PROGETTO DI MASSIMA

APPROVATO CON DELIBERAZIONE DI GIUNTA COMUNALE N. 290 DEL 16.10.2012

IL SEGRETARIO GENERALE Dott. Francesco Pucci

GOMUNE DI JESOLO
UFFICIU PROTOCOLLO

11.11.11 069438

CAT.....CL.....FASC.....

IL DIRIGETTE AREA TECNICA Arch. Renato Segatto

Novembre 2011

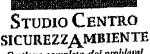
J:\AreaProgetti\JESOLO\JES PUA 2011\JES2011 ELABORATI PUA \\
\JES2011 Allegati definitivi\JES2011_10_2_Relazione gas

SOGGETTO PROPONENTE: CONSORZIO PARCO PINETA

CONSORZIO PARCO PINETA Via Vecchia Ferriara, 51 36100 MCENZA C.E.E. R. IVA 03751690276

STUDIO MOTTERLE

Viele Zlied, 4 - 36050 Montaylata (VI) 1, +30 0444 664160 1, +39 0444 963019


btodegigalegiepigasapiegercom พระพัทธุ์เกตุเกตรณ์สุดสุดารณ์ม

Gonçalo Byrne Arquitectos, Lda

Rua da Eccola Poldentica 285 1250-101 Lishoa - Portugill T --351 21 300-109 E gend@byrnancy.com h communication@byrnancy.com W www.byrnearq.com

Gestione completa dei problemi ambieutalt e.di. sicurezzo

Premessa

Scopo della presente relazione è quello di descrivere in modo sommario le opere previste per la fornitura di gas metano alle unità immobiliari della nuova lottizzazione Orizzonte Verde (ex Parco Pineta) aree C2.1-14/D4-12 in comune di Jesolo (VE) e quella di delineare le linee guida secondo le quali sono state dimensionate le condotte e le apparecchiature proposte.

A seguito dei contatti avuti con Italgas di Jesolo e a seguito della consultazione delle tavole delle reti tecnologiche relative alla zona interessata dall'intervento – tav 27 della sitografia – si sono stabiliti dei principi di intervento che tengono conto:

- 1. della continuità di fornitura delle utenze già allacciate alle rete esistente
- 2. delle esigenze tecniche sia in termini di rispetto normativo distanze, materiali e metodi sia in termini di tempistiche di gestione della commessa da parte di Italgas dai 9 ai 15 mesì per le fasì di lavoro che prevedono più di 2000 m di linea.
- 3. della conformazione e potenzialità delle rete di distribuzione esistente

Le opere previste consistono nella realizzazione di nuovi stacchi che andranno a servire la nuova lottizzazione.

Saranno inoltre indicati i tracciati delle nuove linee di distribuzione del gas all'interno della lottizzazione.

Stato di fatto

L'attuale linea del gas metano passa a nord lungo via Marina Cavetta con una tubazione in PE DN125 di 4º specie a pressione di circa 4,9 bar; la linea poi prosegue verso sud in viale Oriente. La linea attuale inoltre va a servire anche una zona a nord del canale Cavetta In via Cristoforo Colombo.

Relazione descrittiva (rif. Allegato A)

Lo stacco di alimentazione principale verrà realizzato in corrispondenza della ilnea esistente della rete di media pressione corrispondente al punto B dell'allegato.

La tubazione sarà in PE per condotte di 4º specie e la media pressione arriverà fino al gruppo riduttore previsto a monte dei contatori situato sui confini di pertinenza per gruppi di utenze fino a 10 unità abitative.

Relazione tecnica

Al fine del dimensionamento delle linee, delle distanze da edifici e da altri impianti e delle prescrizioni tecniche di progetto si rimanda alla trattazione esecutiva.

Per poter procedere alla realizzazione della darsena prevista nel progetto sarà necessario smantellare un tratto della attuale linea di trasporto del gas metano - tratto BC dell'allegato - e spostare lo stacco di alimentazione delle utenze situate a nord del corso d'acqua Cavetta (comune di Cortellazzo) – punti G e B dell'allegato.

Lo stacco di alimentazione verso nord verrà realizzato in corrispondenza della linea esistente della rete di media pressione corrispondente al punto B dell'allegato; il tratto di tubazione di attraversamento del corso d'acqua sarà sotterraneo e andrà a collegarsi all'esistente tubazione di distribuzione in via Cristoforo Colombo – tratto GB dell'allegato.

In via Marina Cavetta nei pressi dello stacco di alimentazione della zona servita da via C. Colombo verrà ripristinata anche la linea di distribuzione di media pressione del gas che andrà a chiudersi sul lato est in viale Oriente In corrispondenza dell'attuale tracciato della linea del gas – tratto BA dell'allegato.

Su questo nuovo tratto di linea di distribuzione verranno realizzati gli stacchi per la nuova lottizzazione.

La tubazione sarà in PE per condotte di 4º specie e la media pressione arriverà fino al gruppo riduttore previsto a monte dei contatori situato sui confini di pertinenza per gruppi di utenze fino a 10 unità abitative.

Il programma lavori e la sequenza dei vari interventi saranno strutturati in modo da rendere minimi i tempi di interruzione della fornitura di gas alle utenze già servite dalla linea di distribuzione di via Cavetta e via Oriente. Per ridurre il disservizio al solo tempo necessario al semplice collegamento delle tubazioni l'intervento sarà eseguito procedendo prima di tutto all'esecuzione della linea di adduzione del gas verso nord – tratto AB dell'allegato - (compresa la parte di attraversamento del canale rivetta e la linea interrata lungo via C. Colombo) e il successivo collegamento alla rete esistente

Solo al completamento di questa fase si procederà alla demolizione della linea B-G-C dell'allegato e all'esecuzione delle opere di sbancamento della zona destinata a darsena.

Calcolo preliminare delle potenze termiche necessarie

Il calcolo delle potenze necessarie alle nuove unità abitative in via del tutto preliminare viene stimato in 6.5 MW.

Allegati:

Allegato A: planimetria del percorso delle reti di progetto ed esistente.

Normativa di riferimento

Gli interventi che si andranno a realizzare saranno conformi alle prescrizioni e alle disposizioni di legge competenti nel territorio nazionale e nella provincia di Venezia e in particolare:

1. leggi riguardanti la distribuzione e il trasporto di gas naturale

DM 24/11/84	Norme di sicurezza antincendio per il trasporto, la distribuzione,
	l'accumulo e l'utilizzazione del gas naturale con densità non
	superiore a 0,8
Lett. Circol	D.M. 24 novembre 1984 – Chiarimenti
4/3/1988	
4421/4105	
D.M. 12/02/1988	Modificazioni al DM 24/11/84 concernente norme di sicurezza
	antincendio per il trasporto, la distribuzione, l'accumulo e
	l'utilizzazione del gas naturale con densità non superiore a 0,8
D.M. 22/05/1989	Abrogazione del terzo comma del punto 3,1,6 della sezione terza
	dell'allegato del DM 24/11/84 concernente norme di sicurezza
	antincendio per il trasporto, la distribuzione, l'accumulo e
	l'utilizzazione del gas naturale con densità non superiore a 0,8
D.M. 27/11/1989	Modificazioni alla normativa di sicurezza antincendio per il
	trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas
	naturale con densità non superiore a 0,8 di cui al DM 24/11/84
D.M. 21/12/1991	Integrazione al decreto ministeriale 24 novembre 1984 recante:
	"Norme di sicurezza antincendio per il trasporto, la distribuzione,
:	l'accumulo e l'utilizzazione del gas naturale con densità non
	superiore a 0,8", per regolamentare le operazioni di carico e
	scarico dei gas,
Lettera	Impianti di riduzione del gas naturale ubicati in cabina.
Circolare	Adeguamento alle disposizioni dei DCPM 01/03/1991 nel rispetto

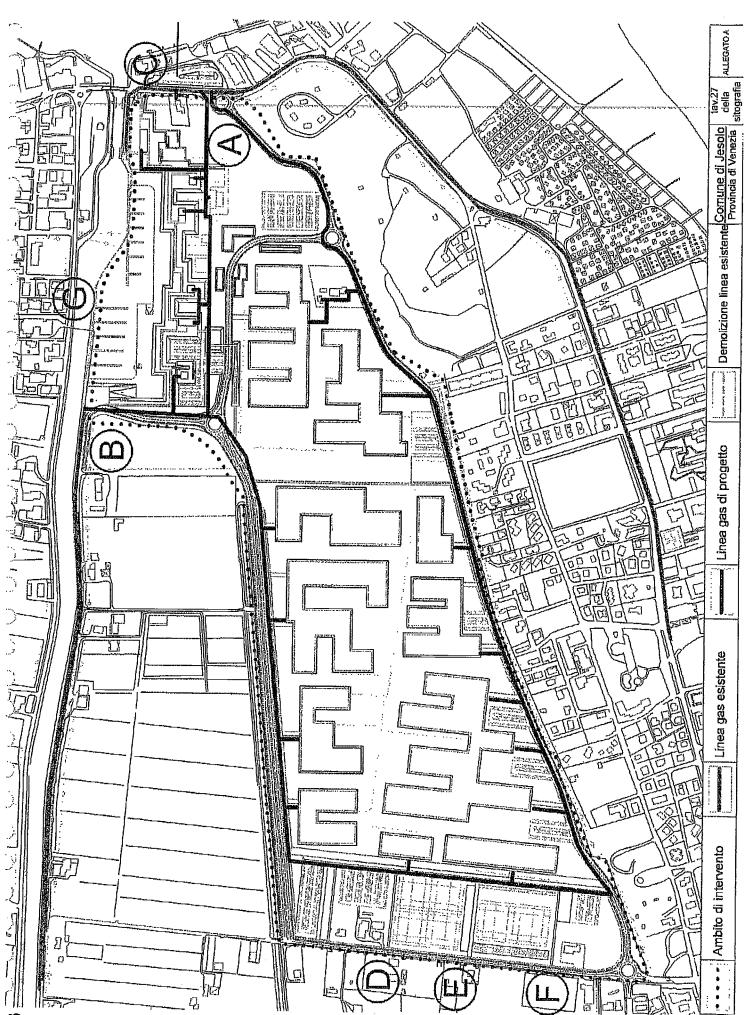
23/08/1993	del DM 24/1 /84. Chiarimenti
13617/4105	
Decreto	Modificazioni al DM 24/11/84 concernente norme di sicurezza
16/11/1999	antincendio per il trasporto, la distribuzione, l'accumulo e
	l'utilizzazione del gas naturale con densità non superiore a 0,8
UNI-CIG 9165	Modalità costruttive della rete di distribuzione gas per pressioni
	inferiori a 5 bar
UNI-CIG 9860	Modalità costruttive della rete a valle del "punto di consegna"
Delibera AEEG	Tratta il problema della sìcurezza delle reti di trasporto e di
236/2000	distribuzione del gas naturale, imponendo una serie di
1	adempimenti a carico dell'esercente
Delibera AEEG	Stabilisce le modalità dei controlli tecnici da parte di GdF e SSC
125/2004	per grado di odorizzazione, potere calorifico e pressione relativa
Delibera AEEG	Testo di riferimento per gli obblighi a cui sono sottoposti i
168/2004 (testo	distributori nell'esercizio delle reti di loro competenza
integrato)	(comunicazione incidenti e di emergenze, verifica periodica,
	garanzia di servizio)
Decreto	Liberalizzazione del mercato internodel gas naturale
Legisiativo nº	
164/2000	
Decreto	Integrazioni al DPR 8 glugno 2001 num 327 in materia di
Legislativo nº	espropriazione per ta realizzazione di infrastrutture lineari
330/2004	energetiche.

2. Norme per i materiali da utilizzare nella posa in opera e nella progettazione di tronchi di rete di trasporto

Tubl di acciaio per condotte di fluidi combustibili. Condizioni
tecniche di fornitura. Tubi per la classe di prescrizione B luglio
1998.
Steel pipes for pipelines for combustible fluids – Technical delivery
conditions – part1: Pipes of requirement class A november 1997
Tubi în polletilene (PE) per condotte interrate per la distribuzione
di gas combustibili – luglio 1988
Tubi, raccordi ed accessori di ghisa sferoidale e loro
assemblaggio per condotte di gas – Prescrizioni e metodi di

1.4

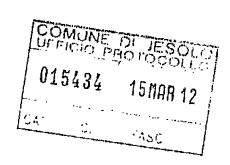
	prova - Marzo 1996
UNI 150 4200	Tubi lisci di acciaio, saldati e senza saldatura. Prospetti generali delle dimensioni e delle masse lineiche — Novembre 1997
UNI EN 1050	Rame e leghe di rame. Tubi rotondi di rame denza saldatura per acqua e gas nelle applicazioni sanitarie e di riscaldamento. Novembre 1997.
UNI 8863	Tubi senza saldatura e saldati, di acciaio non legato, filettabili secondo UNI ISO 711 – Gennaio 1987
UNJ 9034	Condotte di distribuzione del gas con pressioni massime di esercizio minori o uguali a 5 bar. Materiali e sistemi di giunzione.


3. Leggi e normative per impianti per l'impiego del gas combustibile

1	
Legge num	Norme per la sicurezza dell'impiego del gas combustibile
1083/71	
Legge num	Norme per la sicurezza degli impianti
	nome per a scoreza degli impianti
46/90	
DPR 447/91	Regolamento di attuazione della legge 5 marzo 1990 mun 46 in
	materia di sicurezza degli impianti
DPR 392/94	·
L/FR 392/94	Regolamento recante la disciplina del procedimento di
	riconoscimento delle imprese ai fini della installazione,
	ampliamento e trasformazione degli impianti nel rispetto delle
	norme di sicurezza.
DDD 018100	
DPR 218/98	Regolamento contenente disposizioni in materia di sicurezza degli
	impianti allmentati a gas combustiblle per uso domestico.
DM 12 aprile	Approvazione della regola tecnica di prevenzione incendi per la
1996	progettazione, la costruzione e l'esercizio degli impianti termici
	alimentati da combustibili gassosi.
DPR 661/96	Regolamento per l'attuazione della direttiva 90/396/CEE,
	concernente gli apparecchi a gas.
DM 02 aprile	
2001	sensi dell'art 3 del DPR 15 novembre 1996 num 661, concernente
	l'attuazione della direttiva 90/396/CEE sugli apparecchi a gas,
UNI7129	Impianti a gas per uso domestico alimentati da rete di
	distribuzione. Progettazione, installazione e manutenzione.
	(Questa norma regolamenta gli implanti termici interni, la

	ventilazione del locali, l'evacuazione dei prodotti della
	combustione).
-UNI-10783	Impianti-alimentati-a-gas combustibile per uso domestico
	preesistenti alla data del 13 marzo 1990 – linee guida per la
	verifica delle caratteristiche tecnico funzionali.
UNI 7140	Apparecchi a gas per uso domestico. Tubi flessibili non metallici
	per allacciamento.
UNI 9891	Tub) flessibili di accialo inossidabile a parete continua per
	allacciamento di apparecchi a gas per uso domestico e similare.
UNI 7132	Odorizzazione di gas per uso domestico e usi similari. Termini e
	definizioni.
UNI 7133 +	Odorizzazione di gas per uso domestico e usi similari. Procedure,
foglio di	caratteristiche e prove.
aggiornamento	
UNI EN 331	Rubinetti a sfera ed a maschio conico con fondo chiuso, a
	comando manuale, per impianti a gas negli edifici.
UNI EN 1775	Trasporto e distribuzione di gas – tubazioni di gas negli edifici –
	pressione massima 5 bar – raccomandazioni funzionali.
UNI EN 1057	Rame e leghe di rame. Tubi rotoni di rame senza saldatura per
	acqua e gas nelle applicazioni sanitarie e di riscaldamento.
UNI EN 751-1-2-3	Materiali di tenuta per giunzioni metalliche filettate a contatto
	con gas della 1°, 2° e 3° famiglia. Composti di tenuta anaerobici.
	Composti di tenuta non indurenti, Nastri di PTFE non sinterizzato.

P.U.A. AMBITO DI PROGETTAZIONE-UNITARIA N-34


ALLEGATI

RELAZIONE TECNICA RETI TECNOLOGICHE ELETTRICA DI MEDIA E BASSA TENSIONE, TELEFONICA E FIBRA OTTICA, ILLUMINAZIONE PUBBLICA - VERSIONE MARZO 2012

APPROVATO CON DELIBERAZIONE DI GIUNTA COMUNALE N. 290 DEL 16.10.2012

IL SEGRETARIO GENERALE Dott. Francesco Pucci

IL DIRIGENTE AREA TECNICA Arch Renato Segatto

Marzo 2012

J:\AreaProgetti\JESOLO\JES PUA 2011\JES2011 INTEGRAZIONI \JES2011_9_Relazione reti_Marzo 2012

SOGGETTO PROPONENTE: CONSORZIO PARCO PINETA

CONSORZIO PARCO PINETA Vio Vecchio Ferriero, 51 36100 VICENZA CIE ER IVA 03751690776

Studio Centro

SICUREZZAMBIENTE Gestione completa dei problemi

ambientali e di sicurezza

STUDIO MOTTERLE

Viele Zileri, 4 - 36050 Monteviale (VI) L +39 0444 954190 J. +39 0444 963079

www.studiomotterle.com pragettl@studiomotterle.com

Gonçalo Byrne Arquitectos, Lda

Rua da Escola Politecnica 285
1250-101 Lieboa - Portugal
7 +351 21 3804199
6 4363 23 3804199
6 geral@byrnearq.com i communication@byrnearq.com
W www.byrnearq.com

Ordine degli Architetti Pranticalori, Paesaggisti e Conservatori Provincia di Vicenza

GONÇALO NUNO E DE SOUSA BYRNE

INDICE

P	ar. <u>Descrizione</u>	pag.
1.	PRINCIPALI LEGGI E NORME DI RIFERIMENTO	2
2.	OGGETTO DEL PROGETTO	3
3.	DOCUMENTAZIONE DI PROGETTO	3
4.	CAVIDOTTI ELETTRICI MT/BT, TELEFONICI E DI PUBBLICA ELLUMINAZIONE	4
	1. Prescrizioni generali	
	2. DISTANZE DI RISPETTO DA ALTRI CAVIDOTTI	
	3. DISTANZE DI RISPETTO DA GASDOTTI	
	IMPIANTO DI PUBBLICA ILLUMINAZIONE	5
5.1	, BLOCCHI DI FONDAZIONE DEI PALI	
	2. Pau di sostegno	
	B. DERIVAZIONI DA IMPIANTO DI ILLUMINAZIONE	
	. APPARECCHI DI ILLUMINAZIONE	
	. CATEGORIE ILLUMINOTECNICHE	
	. CONTROLLORE ELETTRONICO DI POTENZA	
	. IMPIANTO DI TERRA ILLUMINAZIONE PUBBLICA	
	LINEE ELETTRICHE	10
6.1	. Prescrizioni generali	
	. Cavi di distribuzione per Bassa Tensione	
	. CAVI DI DISTRIBUZIONE PER MEDIA TENSIONE	
	DISTRIBUZIONE RETE TELEFONICA/FIBRA OTTICA	12
7.1	. CAVIDOTII12	
	DISTANZE DI RISPETTO DA ALTRI CAVIDOTTI	
	. ÀRMADIO STRADALE PER APPARECCHIATURE ELETTRICHE ED ELETTRONICHE	
	CAVI TELEFONICI	
Pre	SCRIZIONI PER LA SICUREZZA	13
7.5.	CONTATTI INDIRETTI	
	CONTATTI DIRETTI	

1. PRINCIPALI LEGGI E NORME DI RIFERIMENTO

- Raccomandazioni e disposizioni di Enti pubblici (ENEL).
- Norme UNI e UNEL riguardanti la normalizzazione del materiale elettrico.
- Norme e progetti di Norme CEI, UNI tra cui si citano:
 - CEI 11-1 Impianti elettrici: norme generali.
 - CEI 11-17 Impianti di produzione, trasmissione e distribuzione dell'energia elettrica. Linee in cavo.
 - CEI 34-21 Apparecchi di illuminazione Parte I: prescrizioni generali e prove.
 - CEI 34-30 Apparecchi di illuminazione Parte 2: Prescrizioni particolari. Proiettori
 - CEI 34-33 Apparecchi di illuminazione Parte 2-3: Prescrizioni particolari Apparecchi per illuminazione stradale
 - CEI 64-7 Impianti elettrici di Illuminazione pubblica e similari.
 - CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1.000 V in corrente alternata e a 1.500 V in corrente continua.
 - UNI EN 11248 Illuminazione stradale, selezione delle categorie illuminotecniche.
 - UNI EN 13201 Iliuminazione stradale Parte 2: Requisiti prestazionali.
 - CEI EN 50086-1 Sistemi di tubi per installazioni elettriche . Parte 1 Prescrizioni generali
 - CEI EN 50086-2-4 Prescrizioni particolari per sistemi di tubi interrati nel suolo
- Decreto 22 gennaio 2008 n. 37 Regolamento concernente l'attuazione dell'articolo 11-quaterdecies, comma 13, lettera a) della legge n. 248 del 2 dicembre 2005, recante il riordino delle disposizioni in materia di attività di instaliazione degli impianti all'interno degli edifici.
- D. Lgs. 9 aprile 2008 n. 81 "Testo unico sulla salute e sicurezza sul lavoro"
- Legge nº 17 del 7 agosto 2009 della Regione Veneto in tema nuove norme per il contenimento dell'inquinamento luminoso, il risparmio energetico nell'illuminazione per esterni e per la tutela dell'ambiente e dell'attività svolta dagli osservatori astronomici.

2. OGGETTO DEL PROGETTO

#**, • .

00000000

Il progetto di massima comprende la descrizione sommaria delle opere previste per la posa e la realizzazione delle reti tecnologiche da realizzare nell'ambito della urbanizzazione di una nuova lottizzazione in località Jesolo (VE) aree C2.1-14/D4-12 denominata "Orizzonte Verde" (ex "Parco Pineta").

Le opere consistono nella realizzazione di nuovi cavidotti interrati, con relativi pozzetti, per la distribuzione delle reti di media e bassa tensione, della telefonia/fibra ottica e dell'implanto di illuminazione pubblica.

Il piano di sviluppo dell'area prevede una stima in termini di nuova potenza elettrica installata di circa 3,0 MW.

Le installazioni riguardanti l'impianto di illuminazione pubblica o similari da realizzarsi nell'ambito urbano rientrano nell'ambito applicativo delle Norme CEI 64-8 "Impianti utilizzatori a tensione nominale

inferiore a 1000 V in c.a." e specificatamente, nell'ambito della Norma CEI 64/7, terza edizione, fascicalo 4618 «Impianti elettrici di illuminazione pubblica». L'alimentazione elettrica degli impianti sarà attuata dalla rete dell'Ente distributore dell'energia in bassa tensione 230/400 Volt, 50 Hertz, sistema TT, in corrispondenza di specifici punti di consegna esterni, posti entro appositi armadi.

Le opere da eseguire saranno compiute in ogni loro parte a perfetta regola d'arte seguendo come riferimento le norme, le prescrizioni e le disposizioni di legge competenti nel territorio nazionale e nella provincia di Venezia.

3. DOCUMENTAZIONE DI PROGETTO

Il progetto di massima è costitulto dalla presente relazione tecnica e dagli elaborati grafici allegati sotto indicati che ne costituiscono parte integrante, ed ai quali si dovrà fare riferimento per quanto non riportato nella relazione stessa.

TAVOLA	DESCRIZIONE				
11/01	DISTRIBUZIONE CAVIDOTTI LINEE ELETTRICHE MT				
11/02	DISTRIBUZIONE CAVIDOTTI LINEE ELETTRICHE BT				
11/03	DISTRIBUZIONE CAVIDOTTI TELEFONIA E FIBRA OTTICA				
11/04	DISTRIBUZIONE CAVIDOTTI E CENTRI LUMINOSI ILLUMINAZIONE PUBBLICA				

4. CAVIDOTTI ELETTRICI MT/BT, TELEFONICI E DI PUBBLICA ILLUMINAZIONE

4.1. Prescrizioni generali

I cavidotti saranno realizzati con tubazioni in PVC flessibile, tipo corrugato in polietilene ad alta densità, ad elevata resistenza chimica e meccanica, autoestinguente, resistenza allo schiacciamento di 750N o superiore, superficie esterna corrugata ed interna liscia, colorazione rosso e blu rispettivamente per condutture elettriche e telefonia, completo di filo guida zincato, completo di giunti, raccordi, collante per effettuare le giunzioni stagne tra i vari tronconi.

Nell'esecuzione del cavidotti saranno tenute le caratteristiche dimensionali e costruttive, nonché i percorsi, indicate negli elaborati grafici.

Saranno inoltre rispettate le seguenti prescrizioni:

- esecuzione dello scavo in trincea con profondità dal piano di campagna variabile tra 1,0 m (per i cavidotti di media tensione) e 0,5 m (per i cavidotti di bassa tensione);
- posa, nel numero e diametro stabilito, di tubazioni rigide e/o flessibili, in materiale plastico
 per il passaggio dei cavi di energia, compreso filo pilota in nylon da 3 mm se di riserva;
- formazione di cassonetto in calcestruzzo, dosato a 150 kg di cemento tipo 325 per metro cubo di impasto, a profezione delle tubazioni in plastica; il calcestruzzo sarà superiormente lisciato in modo che venga impedito il ristagno d'acqua;
- Il riempimento dello scavo dovrà effettuarsi con materiali di risulta, sabbia e/o con ghiaia naturale vagliata, sulla base delle Indicazioni fornite dai tecnici comunali; superiormente sarà posato un nastro di segnalazione bianco/rosso per indicare la presenza delle suddette tubazioni.

Particolare cura dovrà porsi nell'operazione di costipamento da effettuarsi con mezzi meccanici.

Un pozzetto rompitratta sarà previsto laddove si renderà necessario un cambio di direzione di tubazione, e nei tratti rettilinei della stessa ad ogni 30÷40 m di lunghezza. Generalmente dovrà essere appoggiato su una superficie drenante predisposta per evitare il ristagno d'acqua.

Durante la fase di scavo dei cavidotti, dei blocchi, dei pozzetti, ecc. dovranno essere approntati tutti i ripari necessari per evitare incidenti ed infortunì a persone, animali o cose per effetto di scavi aperti non protetti.

4.2. Distanze di rispetto da altri cavidotti

Nei parallelismi tra cavidotti di energia e di telecomunicazioni, la distanza in pianta dovrà essere almeno di 0.3 m. Quando non è possibile rispettare questa distanza, occorre installare una protezione supplementare (es. cassetta metallica) sul cavidotto a quota superiore; se la

distanza è inferiore ad 0.15 m, la protezione va installata su entrambi i cavidotti.

Nell'incrocio tra cavidotti di energia e di telecomunicazioni, la distanza dovrà essere di almeno 0.3 m; il cavidotto posto superiormente dovrà essere protetto per la lunghezza di 1 m. Ove per giustificati motivi tecnici non sia possibile rispettare la distanza minima di 0.3 m la protezione deve essere applicata anche sul cavidotto posto inferiormente. La protezione dovrà essere realizzata con cassetta, appure tubo, preferibilmente in acciaio zincato o inossidabile, di spessore almeno 2 mm.

4.3. Distanze di rispetto da gasdotti

Le distanze dei cavidotti elettrici da i gasdotti sono regolate dai DM 24/11/1984 "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0.8".

Nei parallelismi la distanza tra le condotte di 4° e 5° specie e la conduttura elettrica dovrà essere almeno pari a 0,5 m. Negli incroci, la distanza dalle condotte del gas di 4° e 5° specie, superiori o inferiori, dovrà essere almeno di 0,5 m. Qualora non fosse possibile rispettare la distanza di 0,5 m, negli incroci devono essere interposti, fra condotta del gas e condutture elettriche, elementi separatori non metallici, come ad esempio lastre di calcestruzzo, di pvc, prolungati da una parte e dall'altra dell'incrocio per almeno 1 m nei sovrappassi e 3 m nei sottopassi.

5. IMPIANTO DI PUBBLICA ILLUMINAZIONE

5.1. Blocchi di fondazione dei pali

Nell'esecuzione dei blocchi di fondazione per il sostegno dei pali di llluminazione saranno mantenute le caratteristiche dimensionali e costruttive indicate nelle tavole del particolari. Saranno inoltre rispettate le seguenti prescrizioni:

- esecuzione della scavo con misure adeguate alle dimensioni del blocco;
- formazione del blocco in calcestruzzo dosato a 250 kg di cemento tipo 325 per metro cubo di impasto;
- esecuzione della nicchia per l'incastro del palo, con l'impiego di cassaforma;
- posa, entro il blocco in calcestruzzo, di spezzone di tubazione in plastica del diametro esterno di 100 mm per il passaggio dei cavi;
- riempimento eventuale dello scavo con materiale di risulta o con ghiaia naturale accuratamente costipata; trasporto alla discarica del materiale eccedente.

5.2. Pali di sostegno

I pali per illuminazione pubblica saranno del tipo in ferro zincato a caldo e verniciato per esterni resistente agli agenti atmosferici, sezione circolare e forma conica, e di varie altezza fuori terra in base all'utilizzo previsto.

00000000000000

Nei pali per l'illuminazione stradale dovranno essere praticate numero due aperture delle sequenti dimensioni:

- un foro ad asola della dimensione 150 x 50 mm, per il passaggio dei conduttori, posizionato con il bordo inferiore a 500 mm dal previsto livello del suolo;
- una finestrella d'ispezione delle dimensioni 200 x 75 mm; e collocata dalla parte opposta al senso di transito del traffico veicolare, con il bordo inferiore ad almeno 600 mm al di sopra dei livello del suolo. La chiusura della finestrella d'ispezione dovrà avvenire mediante un portello realizzato in lamiera zincata a filo palo con bloccaggio mediante chiave triangolare oppure. Il portello deve comunque essere montato in modo da soddisfare il grado minimo di protezione interna IP 33 secondo Norma CEI 70-1.

Per la protezione di tutte le parti in acciaio (pali, portello, guida d'attacco, braccio e codoli) è richiesta la zincatura a caldo.

Il percorso dei cavi nei blocchi e nell'asola inferiore dei pali, dovrà essere protetto tramite uno o più tubi in PVC flessibile serie pesante diametro 50 mm, posato all'atto della collocazione dei pali stessi entro i fori predisposti nei blocchi di fondazione medesimi.

5.3. Derivazioni da impianto di Illuminazione

La derivazione agli apparecchi di illuminazione, sarà eseguita con cavi uni/multipolari aventi adeguata sezione derivandosi direttamente in pozzetto dalla linea dorsale con l'impiego di connettori in rame a compressione e successivo ripristino dell'isolamento con muffola in gomma in pezzo unico chiusa da mollette in acclaio inox, resina epossidica bicomponente in busta per l'isolamento elettrico e fasciatura con nastro di gomma. Il tutto a ricostruzione dell'isolamento.

Come detto, tutti i conduttori infilati entro i pali e bracci metallici, saranno ulteriormente protetti, agli effetti dei doppio isolamento, da una guaina isolante di diametro adeguato.

5.4. Apparecchi di liluminazione

Tutti gli apparecchi di illuminazione dovranno avere il grado di protezione minimo dell'ottica pari a IP65, IP54 per l'alimentazione ed essere di primarie case costruttrici (es. Philips, Evo, Siteco ecc.).

Gli apparecchi dovranno altresì essere realizzati in Classe II ed essere rispondenti all'Insieme delle norme:

- CEI 34-21 fascicolo n. 1034 Novembre 1987 e relative varianti
- CEI 34-30 fascicolo n. 773 Luglio 1986 e relative varianti" proiettori per illuminazione"
- CEI 34-33 fascicolo n. 803 Dicembre 1986 e relative varianti" apparecchi per illuminazione stradale"

In ottemperanza alla norma CEI 34-21 i componenti degli apparecchi di illuminazione dovranno essere cablati a cura dei costruttore degli stessi, i quali pertanto dovranno essere forniti e dotati completi di lampade a vapori di sodio ad alta pressione (per illuminazione stradale) e a ioduri metallici (per illuminazione aree sportive e pedonali); eventualmente, in alternativa alle lampade tradizionali precedentemente indicate, in fase di progetto esecutivo e in accordo con gli Enti Comunali si potranno utilizzare corpi illuminanti a tecnologia a LED.

Sugli apparecchi di illuminazione dovranno essere indicati in modo chiaro e indelebile, ed in posizione che siano visibili durante la manutenzione, i dati previsti dalla sezione 3 - Marcatura della Norma CEI 34-21.

Gli apparecchi di illuminazione dovranno altresi soddisfare i requisiti richiesti dalla Legge nº 17 del 7 agosto 2009 della Regione Veneto in tema nuove norme per il contenimento dell'inquinamento iuminoso, il risparmio energetico nell'illuminazione per esterni e per la tutela dell'ambiente e dell'attività svolta dagli osservatori astronomici.

In particolare i corpî illuminanti posti in opera dovranno avere un'emissione nell'emisfero superiore (cioè con $\gamma \ge 90^\circ$) non superiore allo 0% del flusso totale emesso.

5.5. Categorie illuminotecniche

La classificazione delle strade dovrà essere effettuata in accordo con il comune sulla base del seguente approccio metodologico:

- in caso di presenza di PRIC o PUT verrà utilizzata la classificazione illuminotecnica definita nel piano della luce e/o la classificazione del Piano Urbano del Traffico (PUT). Dovrà inoltre essere verificato che la classificazione del PUT sia coerente con quanto definito dal codice della Strada (D.Lgs.285 del 30/4/1992 e successive modifiche) e sulla base al D.M. n.6792 del 5/11/2001 "Norme funzionali e geometriche per la costruzione delle strade" emanato dal Ministero Infrastrutture e Trasporti;
- In mancanza di strumenti di pianificazione dovrà essere identificata la classificazione illuminotecnica applicando la norma italiana UNI 11248 e la norma UNI EN 13201, le quali forniscono la procedura per la selezione delle categorie illuminotecniche e l'identificazione degli aspetti che condizionano l'illuminazione stradale e che, attraverso la valutazione dei rischi, permetterà il conseguimento del risparmio energetico e la riduzione dell'impatto ambientale

知のつつつつつつつつつつ

La categoria illuminotecnica di riferimento dipenderà dal tipo di strada della zona di studio ed e di seguito sintetizzata nella tabella 1 in funzione del Codice della strada e del DM 6792 del 5/11/2001.

Tabella 1: Tabella esemplificativa per la classificazione di una strada secondo il codice della strada.

Classificazione Stradale:	Carreggiate Indipendenti (min)	Corsie (min) x Senso di Marcia	Altri requisiti minimi	Indice Illum
A-Autostrada	: 2	2+2		; 5
8- Extraurbane principali	. 2	2+2	tipo tangenziali, superstrade	: 6
D-Urbana a scorrimento veloce	2		- limite di vebcità>50km/n	: 6
D-Urbane a scorrimento	2	2+2	- limite di vabcità<=50km/h	. 4
C- Extraubane secondarie	, 1	1+1	- se con banchine laterali transitabili - collegamento di + comuni (S.P. o S.S.)	: ·5
E-Urbane di Quartiere	· 1	2 nallo	- solo se prosegulmento di strade tipo C - solo con corsie di mencura e parcheggi esterni alla carreggiata	. el
F-Extraurbane locali	. 1	1+1 0 1	- se diverse dalle strade tipo C	4
F- Urbane Interaonali	1		- strade tipo F - Urbane locali di rilievo che attraversano l'intero centro abitato	3
F-Urbane locali	(1	i+1 o 1	- tutte le altre strade nel centro abitato	' Z

Per la scelta della categoria illuminotecnica di progetto e di esercizio l'analisi dei parametri di influenza verrà condotta dal progettista all'interno dell'analisi del rischio nella fase di progetto esecutivo. La tabella 2 riassume i prospetti 1-2-3-A della norma UNI11248 e la classificazione secondo le leggi dello stato; la stessa permette di risalire alla classificazione illuminotecnica (riferimento/progetto/esercizio) dei tracciato viario in funzione dei relativi parametri fondamentali di influenza.

Tabella 2: Classificazione illuminotecnica di progetto e esercizlo in funzione della categoria della strada "(tabella 1)-e del fondamentali parametri di influenza secondo la norma UNI) 1248:

^{*} se la segnaletica è efficace e sufficiente le strade in corrispondenza di aree di conflitto si riconducono alla categoria illuminotecnica inferiore corrispondente a strade senza aree di conflitto.

	T		Έ		T		1	Flusso di	Tuelle
atrada di	Portata di servizio per corsia (velcosiora)	Descrizione del tipo della strada	Limitidi velodiž (km h-1)	Calegoria Illuminotecnica di riferimento	Aree di conflitto	Complessită campo visivo	Dispositivi Rallentatori	Calegoria Ruminotecnica or projetio 100%	Categorie illuminotecnica di esercizio 50% 25%
At At	1100	Autostrade extraurbane Autostrade urbane	130	ME1		Normale Elevata		WE2	ME3a ME4a.
A2	1100	Strade di servizio alle autostrade	70 -90		No.	Normale		ME130	ME2 ME3a ME4a
A2	1100	Strade di servizio alle autostrade urbane	50	ME3a	5(*	Elevata Normale Elevata		H E2	ME3b
В	1100	Strade extraurbane principali	110	ME3a No	No	Normale Elevata	-	MESE AND AND AND AND AND AND AND AND AND AND	ME4a ME4a ME3a ME3a
			.,,,		S(ª	-	*	ME1 &	ME2 ME2
B	1100	Strade di servizio alle strade extraurbane principali	70-90	ME4a	No	Mormale Elevata	-	ME4a	ME67 ME6 ME4a ME4a
D	960				SI* No	Inhituenta	-	ME28	ME3a ME3a ME4a ME6
<u> </u>		Strade urbane di scorrimanto veloce	70	ME3a	81.	-		MEZ ***	ME3a ME4a
D	950	Strade urbane di scorrimento	60	ME4b	No Si*		-	ME46***	MES MES
C	600	Strade extraurbane secondarie (tipl C1 e C24))	70-90	ME3a	No Si*		-		ME4a ME5: ME3a ME4a
С	600	Strade extraurbane secondaria	50	ME4b	No Bi*	-	-	MEID	ME6 ME6 ME4b ME5
C	600	Strade extraurbane secondarle con limiti particolari	70-90	ME3a	No Bia	-		MEDA	ME4a ME6
	\$00	Strade urbane interquartiere	50	ME3c	No	-	No	J. J. E3cs	ME3a ME4a ME4b ME6
E					S)t	-		WE WES	ME3c ME4b ME3c ME4b
	\$00	Strade urbane di quarliere	50	ME3c -	No	-	Nei pressi No	ME3c	ME2 ME3c ME4b ME5
E					Sie		Nei pressi No Nel pressi	ME2	ME3c ME4b ME3c ME4b ME2 ME3c
F	800	Strede locali extraurbane (tipi F1 e F2)	70 - 90	ME3a	No	-	-	MESON	ME4a ME5
F	460	Strade locali extraurbane	50	ME4b	Si* No	-	-		ME3a: ME4a ME6: ME6:
F	800				Si* No		-	111111111111	ME4b ME6 ME6 ME6
	<u> </u>	Strade locali urbane (tipi F1 e F2)	50	ME4b	SIR	-	-		MES: MEG

5.6. Controllore elettronico di potenza

Per l'illuminazione pubblica è previsto l'impiego di controllori elettronici di potenza (Conchiglia o similare) per consentire di ridurre il flusso luminoso delle lampade e di ottimizzarne i consumi. Il regolatore sarà indicato per la regolazione della luminosità delle lampade a scarica, vapori di mercurio, sodio ad alta o a bassa pressione, ioduri metallici, e ottenere un risparmio energetico che potrà variare dal 25% al 35% e un considerevole prolungamento della vita delle lampade. I controllori elettronici di potenza dovranno essere installatì all'interno di armadi vetroresina per posa a pavimento.

In alternativa potrà essere realizzato, in accordo con gli Enti Pubblici, un sistema di telegestione ad onde convogliate dell'illuminazione pubblica, in modo da poter monitorare

···

:. .

^}

costantemente lo stato degli impianti, conoscere in tempo reale il dettaglio dei guasti, decidere con flessibilità come, dove e quando accendere, spegnere o ridurre il flusso luminoso del singolo punto luce. Anche con l'adozione di questa tipologia impiantistica si potrà ottenere un risparmio energetico, ridurre l'inquinamento atmosferico e luminoso ed inoltre garantire maggior efficienza e qualità del servizio.

Per entrambe le soluzione proposte è comunque prevista la realizzazione di un cavidotto per la posa di un cavo in fibra ottica con caratteristiche da concordare con l'Ente gestore; alcuni di questi pozzetti di infilaggio e ispezione saranno inoltre messi in collegamento con alcuni pozzetti facenti parte del cavidotto di illuminazione pubblica.

5.7. Impianto di terra illuminazione pubblica

L'impianto non prevedrebbe la messa a terra degli apparecchi di Illuminazione e delle attre parti metalliche, in quanto tutto il sistema sarà realizzato con doppio isolamento (Classe II). Per particolari esigenze (qualora non venissero impiegati apparecchi di illuminazione sprovvisti di isolamento in Classe II, oppure sia necessario realizzare la protezione delle strutture contro i fulmini) o per espressa richiesta dei tecnici comunali si considera comunque di realizzare un l'impianto di terra a cui collegare i pali dell'illuminazione.

L' impianto di terra sarà composto da conduttore in rame isolato, tipo N07V-K, colore giallo/verde, sezione minima 1x16 mm² posata all'interno del cavidotto e da dispersori a croce da collocare all'interno di alcuni pozzetti di derivazione ed Infilaggio. Il valore della resistenza di terra dovrà comunque essere controllato al fine da risultare coordinato con i dispositivi di interruzione automatica del circuiti per la protezione dai contatti indiretti.

6. LINEE ELETTRICHE

6.1. Prescrizioni generali

Le sezioni dei conduttori dovranno essere tali che la massima corrente in essi passante in servizio non superi l'80% di quella prevista dalle tabelle UNEL vigenti, ed essere correlate ai dispositivi di protezione installati a monte in modo da soddisfare le prescrizioni relative alle norme CEI 64-8: "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua" e successive varianti.

La sezione dei conduttori elettrici per l'impianto di illuminazione pubblica dovrà essere tale da garantire in ogni punto dell'impianto una caduta di tensione massima rispetto alla sezione di fornitura non superiore al 5%.

Le eventuali giunzioni dovranno essere eseguite unicamente realizzando giunti ad isolamento solido o termoindurenti.

I dispositivi di interruzione dovranno essere scelti in modo tale da rispettare le prescrizioni indicate dalle Norme CEI relativamente alla protezione del circuiti contro il corto circuito ed il

sovraccarico, e l'interruzione dei circuiti nei tempi indicati dalle curve di sicurezza.

In particolare la protezione delle condutture elettriche dal sovraccarico sarà garantita quando:

 $l_b < l_n < l_z$

 $|_{\rm f} < 1.45 |_{\rm z}$

dove:

2000

lı = corrente convenzionale di funzionamento del dispositivo di protezione

 I_n = corrente nominale dispositivo di protezione

lz = portata delle condutture

l_b = corrente di impiego del circuito

La protezione dai cortocircuiti è garantita invece se la corrente presunta di cortocircuito è minore o uguale al potere di interruzione del dispositivo di protezione nel punto di installazione, Inoltre deve essere verificata la seguente relazione:

|2 t< K2 S2

dove:

12 t= integrale di Joule

S = sezione del conduttore

K = coefficiente che dipende dal tipo di cavo

L'energia lasciata passare dal dispositivo di protezione prima dell'interruzione del guasto deve essere minore della massima energia sopportabile dal cavo.

6.2. Cavi di distribuzione per Bassa Tensione

La posa delle varie linee di alimentazione degli impianti di illuminazione e di distribuzione di bassa tensione sarà eseguita esclusivamente all'interno dei cavidotti sopra descritti.

Per la distribuzione dell'energia elettrica sono previsti cavi del tipo FG7(O)R uni/multipolari di sezione adeguata alla potenza impegnata.

Tutti i cavi saranno rispondenti alla Norma CEI 20-13 e varianti e dovranno disporre di certificazione IMQ od equivalente. I cavi infilati entro pali o eventuali tubi metallici saranno ulteriormente protetti da guaina isolante.

Per i cavi unipolari la distinzione delle fasi e del neutro dovrà apparire esternamente sulla guaina protettiva. E' consentiva l'apposizione di fascette distintive ogni tre metri in nastro adesivo, colorate in modo diverso (marrone fase R - bianco fase 5 - verde fase T - blu chiaro neutro).

6.3. Cavi di distribuzione per Media Tensione

Nei cavidotti predisposti verranno posati cavi per media tensione di tipo tripolari ad elica

visibile, fipo RG7H1R 12/20 kV, con conduttore in rame isolato in mescola di gomma ad alto modulo G7, schermatura in filo di rame, e guaina esterna in PVC di qualità RZ. Tutti i cavi saranno rispondenti alla Norma CEI 20-13 e varianti e dovranno disporre di certificazione IMQ od equivalente.

7. DISTRIBUZIONE RETE TELEFONICA/FIBRA OTTICA

7.1. Cavidotti

Nell'esecuzione dei cavidotti saranno tenute le caratteristiche dimensionali e costruttive, nonché i percorsi, Indicati negli elaborati grafici.

Durante la fase di scavo del cavidotti, dei pozzetti, ecc. dovranno essere approntati tutti i ripari necessari per evitare incidenti ed infortuni a persone, animali o cose per effetto di scavi aperti non protetti.

7.2. Distanze di rispetto da altri cavidotti

Nei parallelismi tra cavidotti di telecomunicazioni e di energia, la distanza In pianta dovrà essere almeno di 0.3 m. Quando non è possibile rispettare questa distanza, occorre installare una protezione supplementare (es. cassetta metallica) sul cavidotto a quota superiore; se la distanza è inferiore ad 0.15 m, la protezione va installata su entrambi i cavidotti.

Nell'incrocio tra cavidotti di telecomunicazioni e di energia, la distanza dovrà essere di almeno 0.3 m; il cavidotto posto superiormente dovrà essere protetto per la lunghezza di 1 m. Ove per giustificati motivi tecnici non sia possibile rispettare la distanza minima di 0.3 m la protezione deve essere applicata anche sul cavidotto posto inferiormente. La protezione dovrà essere realizzata con cassetta, oppure tubo, preferibilmente in acciaio zincato o inossidabile, di spessore almeno 2 mm.

7.3. Armadio stradale per apparecchiature elettriche ed elettroniche

Per le opere di distribuzione delle linee telefoniche/fibra ottica si dovrà provvedere all'installazione di alcuni armadi stradali per permettere l'alloggiamento delle apparecchiature elettriche ed elettroniche necessarie.

Il tipo e le dimensioni del contenitore dovranno comunque avere la preventiva approvazione dell'Ente Distributore.

7.4. Cavi telefonici

Per la distribuzione della rete di telefonia è prevista la posa nei cavidotti predisposti di cavo telefonico tipo TRR/TRHR, con conduttori in rame elettrolitico diam. 0,6 mm, isolato in polietilene media densità, schermo in alluminio, guaina esterna in PVC e potenzialità da 10 a 600 coppie a seconda di quanto richiesto dall'Ente Distributore.

PRESCRIZIONI PER LA SICUREZZA

7.5. Contalli Indiretti

 $(\tilde{})$

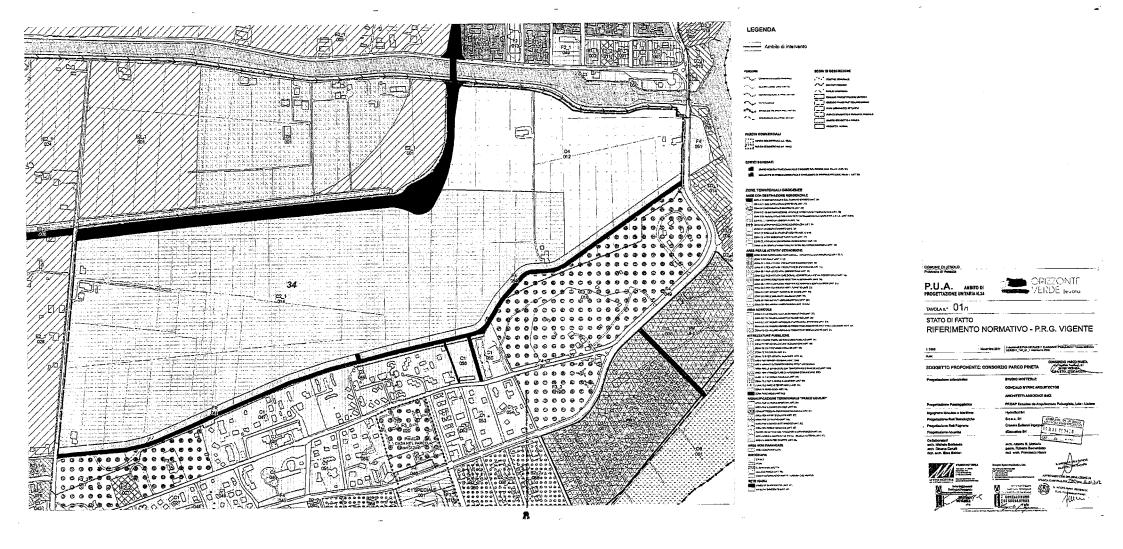
 $\langle \hat{\ } \rangle$

()

The second second second second

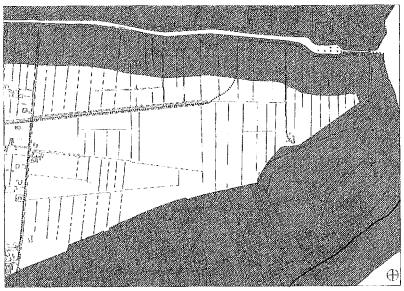
La protezione dai contatti indiretti sarà attuata primariamente mediante interruzione automatica del circuito e dai collegamento delle masse all'impianto di terra, secondo le indicazioni specifiche dell'alimentazione dell'impianto utilizzatore.

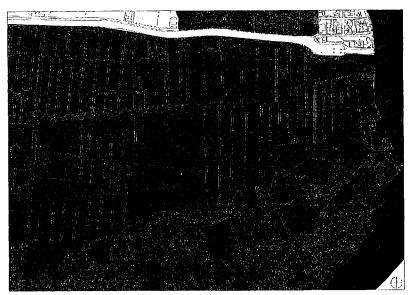
Indipendentemente dal tipo di impianto utilizzatore, la protezione dai contatti indiretti sarà di norma attuata mediante l'impiego di adeguati dispositivi differenziali ad alta e bassa sensibilità o selettivi.


La protezione dai contatti indiretti a mezzo di dispositivi differenziali sarà omessa solo quando essa sia ottenuta con pari efficacia realizzando le linee di alimentazione e tutte le apparecchiature utilizzate in ciasse di isolamento seconda o con isolamento equivalente.

7.6. Contatti diretti

La protezione dai contatti diretti sarà realizzata, in generale, mediante isolamento delle parti attive e assicurando il corretto grado di protezione IP mediante involucii, barriere e/o per costruzione dei singoli componenti dell'impianto (misure di protezione totale).


ll tecnico Ing. Sandro Furlani



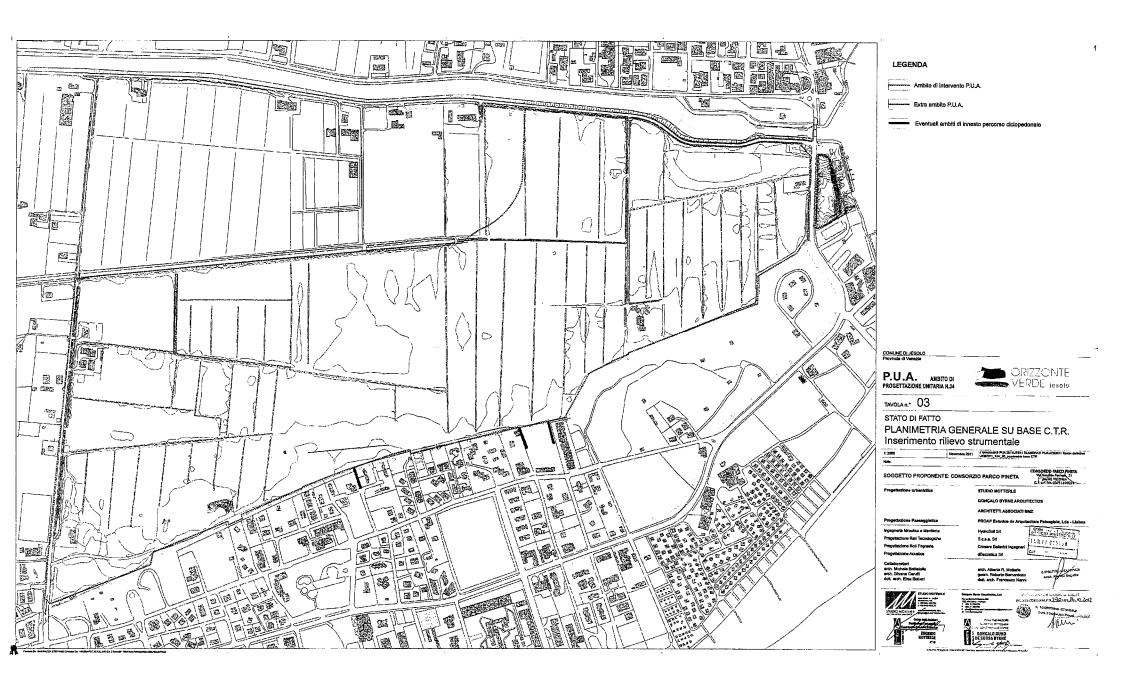
PLANIMETRIA A - VINCOLO AMBIENTALE

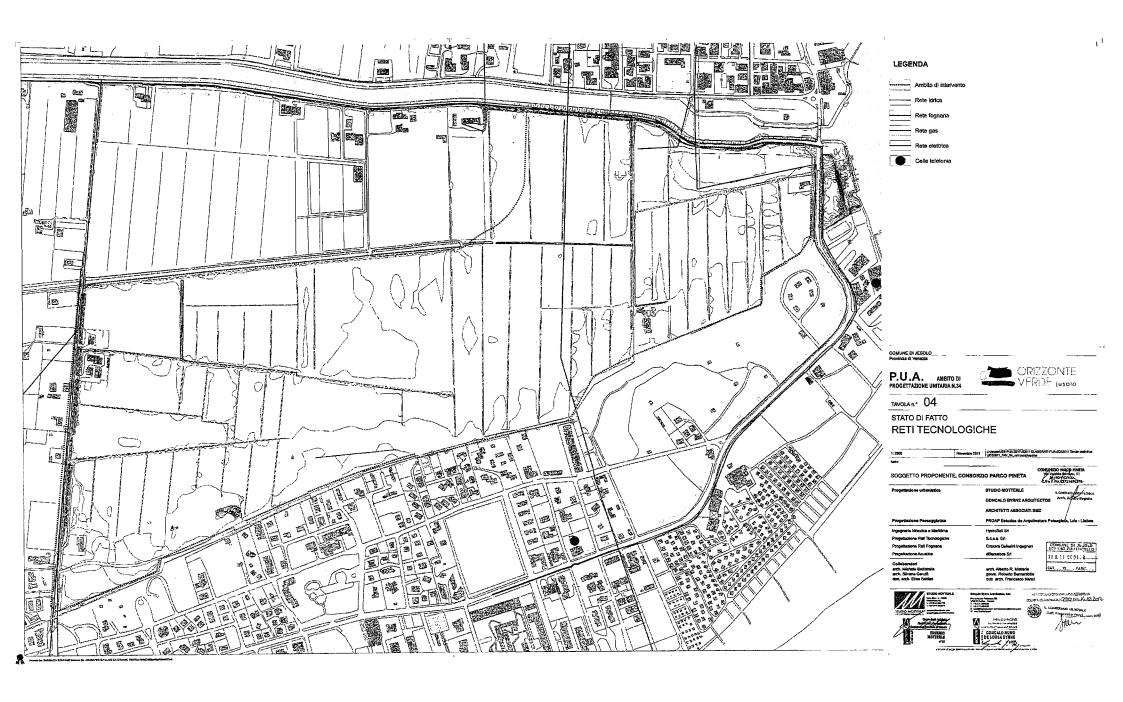
PLANIMETRIA B - VINCOLO AMBIENTALE, IDROGEOLOGICO E FORESTALE

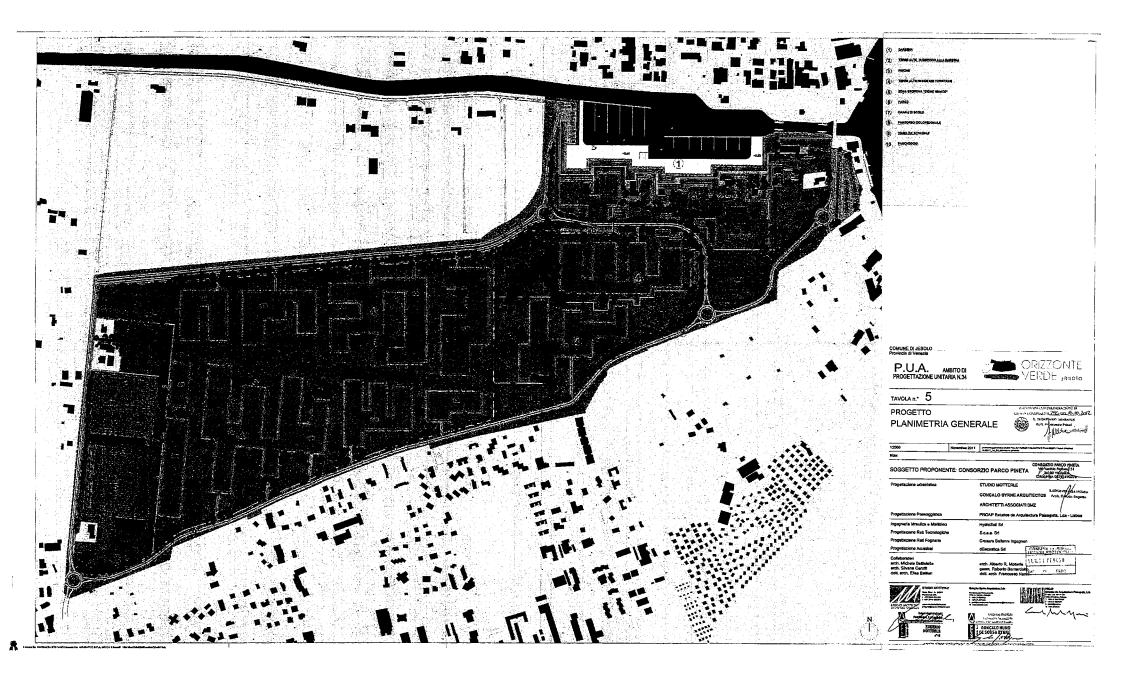
PLANIMETRIA C - P.A.I. VINCOLO PERICOLOSITA' IDRAULICA

LEGENDA Ambito di intervento P.U.A. AMBITO DI PROGETTAZIONE UNITARIA N. 34 PLANIMETRIA A Vincolo ambientele Legge n. 1497/39 PLANIMETRIA B Vincolo ambientele idrogeologico e forestale Ex Legge Galasso n.431/85

PLANIMETRIA C


P.A.I. Piave - P1 Pericolosità moderata


P.A.I. Plave - P2 Pericolosità media


P.A.I. Piave - P3 Area fluviale

• Comune di Jesolo P.R.G. Schema Direttore - Parco Pineta scala 1: 2000 COMMENDATIONS OREZCIATE VERDE main P.U.A. AMBITO DI PROGETTAZIONE UNITARIA N.H TAVOLAN 02 STATO DI FATTO SCHEMA DIRETTORE

		PROGRAMMENT OF THE PROGRAMMENT O	TOTAL TO PROPORTY IL CONTROL OF THE PROPORTY IN
		i de l	
	A B W	g Grows	\$52 1826 47 . c 324 182
			file auf at , the Bree
	<u> </u>		The state of the s
		Hard Control of the C	at the second se
		五年	and the state of t
	200 A 2 A 2	 	2326 2726 12 15 15 15 15 15 15 15 15 15 15 15 15 15
			Party chart of the second
		भाग ज्युंचे काम ज्युंचे काम ज्युंचे क्युंचे ज्युंचे क्युंचे	The state of the s
		WORTEN CHANGE TO THE COLUMN TO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· #		12 2142 12 12 12 12 12 12 12 12 12 12 12 12 12
	N 19 10 45	7.3.3.7.3 8.2.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.2.2 8.	186 9186 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.
		中有精育	
		্যান কর্ম ক্রেম্বর্টার ক্রেম্বর্টার ক্রেম্বর্টার	18 1816 13 .2213 efs
		, §	12 8483 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		(E)	1232 233 ut \$ \$ \$ \$ 250
			\$18 452 63 / 20 2 3 kg
		2 T. J. J. L.	153 2165 11 1812 181
			tet stei wit , e bei tie
		3 = E	tric mai of research
		# # # # # # # # # # # # # # # # # # #	192 8886 03 action 22x
		TOTAL STATE OF THE	- 5774 of 1111
Section Control of Con		this sen Transactor Justic	GRANI GRANI

